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ABSTRACT

In this paper, we identify that the key criterion for determining whether a model
is truly capable of novel view synthesis (NVS) is transferability: Whether any
pose representation extracted from one video sequence can be used to re-render
the same camera trajectory in another. We analyze prior work on self-supervised
NVS and find that their predicted poses do not transfer: The same set of poses lead
to different camera trajectories in different 3D scenes. Here, we present XFactor,
the first geometry-free self-supervised model capable of true NVS. XFactor com-
bines pair-wise pose estimation with a simple augmentation scheme of the inputs
and outputs that jointly enables disentangling camera pose from scene content
and facilitates geometric reasoning. Remarkably, we show that XFactor achieves
transferability with unconstrained latent pose variables, without any 3D inductive
biases or concepts from multi-view geometry — such as an explicit parameter-
ization of poses as elements of SE(3). We introduce a new metric to quantify
transferability, and through large-scale experiments, we demonstrate that XFactor
significantly outperforms prior pose-free NVS transformers, and show that latent
poses are highly correlated with real-world poses through probing experiments.
Project Page: https://www.mitchel.computer/xfactor/

1 INTRODUCTION

In recent years, novel view synthesis (NVS) has emerged as a canonical 3D computer vision prob-
lem. Methods today are built on the rich discipline of multi-view geometry, which has given rise to
structure-from-motion models that can preprocess large datasets of multi-view images to compute
corresponding SE(3) camera poses. Given a dataset of multi-view images and their camera poses,
state-of-the-art methods allow a user to specify a camera pose as an SE(3) transform and render the
corresponding view near photorealistically. However, the bitter lesson (Sutton, 2019) teaches us to
be skeptical of any inductive bias in learning systems. In this paper, we ask: Can we formulate NVS
without reliance on multi-view geometry, tackling it as a pure machine learning problem?

To answer this question, we must first ask what novel view synthesis is without relying on the
vocabulary of multi-view geometry. To this end, we identify transferability as the key property of
any novel view synthesis model: the ability to use a set of camera poses extracted from one sequence
to render the same camera trajectory in any other scene. As a corollary, the key requirement of any
valid representation of camera poses is not that they can be identified with an SE(3) representation,
but that they render the same camera trajectory across scenes.

Equipped with this insight, we tackle self-supervised novel view synthesis as a pure machine learn-
ing problem. We find that existing methods (Jiang et al., 2025; Sajjadi et al., 2023) do not infer
transferable camera poses, and are instead prone to interpolating context frames. This is not true
novel view synthesis, as it does not allow the user to define which view they want to render in an
arbitrary scene. Here, we present XFactor, the first self-supervised model capable of true NVS.
XFactor combines pair-wise pose estimation with a simple augmentation scheme of the inputs and
outputs that jointly enables disentangling camera pose from scene content and facilitates geometric
reasoning. This is motivated by two key insights: 1) preventing the model from interpolating by
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bootstrapping from a two-view NVS model that extrapolates by design, 2) reifying transferability
into a training objective compatible with real-world video by augmenting sequences of frames in
a manner that minimizes pixel content overlap while preserving camera motion, such as applying
two inverse masks to the same sequence. XFactor achieves transferability with unconstrained latent
pose variables, without any 3D inductive biases or concepts from multi-view geometry — such as
an explicit parameterization of poses as elements of SE(3). We then fine-tune the two-view XFac-
tor model into a multi-view model that we show enables transferable, high-quality NVS: Given a
sequence of frames and choosing one as the reference, we can generate a latent trajectory by using
the encoder to estimate the pose between the reference and each frame; Then, using any other video
sequence as context, our renderer will reproduce that same camera trajectory in the new scene.

Through extensive experiments we show that our method is the first fully geometry-free and self-
supervised achieving true NVS across diverse, large-scale real-world datasets at both the scene and
object level — including RE10K (Zhou et al., 2018), DL3DV (Ling et al., 2024), MVImgNet (Yu
et al., 2023), and CO3Dv2 (Reizenstein et al., 2021). In particular, we introduce a metric for quan-
tifying the degree to which novel views adhere to reference poses, and demonstrate that XFactor
dramatically outperforms prior methods RayZer (Jiang et al., 2025) and RUST (Sajjadi et al., 2023).
In a series of ablations, we analyze what design decisions matter to solve transferable novel view
synthesis, and demonstrate that, counter-intuitively, forcing the model to parameterize camera poses
as SE(3) is harmful and rather, what matters is a careful design of inputs and outputs to pose esti-
mator and renderer. In summary, we make the following key contributions:

1. We introduce transferability as the key criterion for determining whether a self-supervised
model is capable of true NVS and introduce the True Pose Similarity metric to quantify it.

2. We identify that prior multi-view self-supervised NVS models interpolate context frames
instead of reasoning about viewpoints. We address this by boot-strapping multi-view NVS
on top of a two-frame model which, by design, always extrapolates.

3. We propose a novel self-supervised NVS training objective which explicitly promotes
transferability, and introduce a representation learning-inspired augmentation strategy for
training with real-world video.

4. Derived from these insights, we present XFactor which to our knowledge is the first fully
self-supervised NVS model to achieve transferability and thus perform true NVS.

5. We empirically demonstrate the merits of our formulation in comprehensive large-scale
experiments and ablations.

2 RELATED WORK

We review prior work on novel view synthesis with and without known camera poses.

Oracle, Semi-Oracle, and Geometric Methods. Using camera poses obtained from an external
pose oracle, such as COLMAP (Schönberger & Frahm, 2016), neural networks can be trained to
predict 3D neural scene representations (Yu et al., 2021; Charatan et al., 2023) or novel views di-
rectly (Jin et al., 2024; Sajjadi et al., 2021; Sitzmann et al., 2021). We refer to these methods as
“Oracle Methods”. Recent work has attempted to reduce the reliance on poses at training time to
tap into larger datasets. These methods work by training a pose prediction module jointly with the
novel view synthesis module. However, existing methods nevertheless rely on some form of external
oracle, such as pre-trained optical flow or correspondence methods (Smith et al., 2023; Chen & Lee,
2023; Wang et al., 2023), pre-trained depth estimators (Fu et al., 2023; Brachmann et al., 2024), or
initialization with weights that were pre-trained on a supervised structure-from-motion task (Huang
& Mikolajczyk, 2025). Some prior work achieves impressive camera pose estimation without rely-
ing on pre-trained oracles (Kang et al., 2025; Yin & Shi, 2018; Zhou et al., 2017), enabled by strong
expert-crafted geometric inductive biases such as warping, correspondence matching, and depth pre-
diction. The goal of our paper is to develop a first-principles approach to novel view synthesis that
does not rely on any form of conventional multi-view geometry.

Unsupervised Geometry-Free Latent Pose Methods. A small number of methods have at-
tempted to solve the unposed novel view synthesis problem without relying on external 3D oracles
and using as little 3D inductive bias as possible, tackling NVS as a pure deep learning problem. In
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this case, a pose estimation module predicts some form of camera poses that are used as condition-
ing inputs to a geometry-free renderer transformer. A key challenge is to prevent the pose estimator
from communicating information about the target frames to the renderer. RayZer (Jiang et al., 2025)
attempts to accomplish this by parameterizing latent poses as rigid-body SE(3) transforms. While
renders are high quality, we show that RayZer has a significant limitation: The same set of predicted
poses renders different camera trajectories in different 3D scenes, i.e., camera poses do not transfer
between scenes. As we will see, this is the effect of the renderer performing interpolation of context
frames rather than true NVS. Closest to our work is RUST (Sajjadi et al., 2023), which attempts a
fully geometry-free approach to novel view synthesis — its promising results were an inspiration
for the present method. RUST attempts to prevent cheating via an information bottleneck: the pose
estimator receives only part of the target view. However, RUST does not solve the transferability
problem — our proposed method is the first method to achieve geometry-free true NVS. Finally, we
note that our approach shares similarities with recent work on latent action models (Zhang et al.,
2025; Gao et al., 2025; Bruce et al., 2024; Schmidt & Jiang, 2024). While these models seek to
extract transition latents describing a variety of ego-centric actions from adjacent video frames, we
instead focus on the specific problem of recovering transferable camera pose representations.

3 METHOD

3.1 NOVEL VIEW SYNTHESIS AS LATENT VARIABLE MODELING

To isolate the key properties of NVS, we first formulate it as a latent variable model. Given a
sequence of images I = {I1, I2, . . . , In} of a static scene, existing NVS methods typically begin
by partitioning them into two disjoint subsets of context images IC and target images IT with
IC ∪ IT = I. These methods can generally be decomposed into three core components: a pose
encoder POSEENC, a scene encoder SCENEENC, and renderer RENDER. Given a choice of reference
view IR ∈ IC relative to which poses will be expressed, the pose encoder maps the context and
target images to sets of latent pose representations; The scene encoder converts the context images
and corresponding latent poses to a latent scene representation:(

IC , IT )
POSEENC7−−−−−→

(
ZC , ZT

)
and

(
IC , ZC

) SCENEENC7−−−−−−→ S. (1)

In the prevailing formulation consistent across both supervised (Jin et al., 2024) and unsupervised
settings (Jiang et al., 2025; Sajjadi et al., 2023), the role of the rendering decoder is to synthesize a
prediction of the target images from the target poses and latent scene representation(

S, ZT

) RENDER7−−−−→ ĨT , (2)

and the model is trained to minimize what we call the autoencoding objective

L ≡ dI
(
IT , RENDER[S, ZT ]

)
, (3)

subject to an image distance metric dI . Satisfying this objective requires the model only to have the
ability to render target frames using scene and pose representations from the same sequence.

An important auxiliary tool in this framework is the ORACLE, which is simply an algorithm that
ingests a sequence of frames and spits out the ground-truth camera poses as elements of SE(3):

{I1, I2, . . . , In}
ORACLE7−−−−→ {g1, g2, . . . , gn} ∈ SE(3)n. (4)

A canonical choice is ORACLE ≡ COLMAP (Schönberger & Frahm, 2016), however in this paper
we instead choose ORACLE ≡ VGGT (Wang et al., 2025), due to its robustness and ease of use.

State-of-the-art oracle NVS models including LVSM (Jin et al., 2024) and pixelSplat (Charatan
et al., 2023) simply define POSEENC ≡ ORACLE and seek to learn only SCENEENC and RENDER.
In contrast, self-supervised NVS models RayZer (Jiang et al., 2025) and RUST (Sajjadi et al., 2023)
aim to learn all three modules end-to-end without reliance on an ORACLE. However, we show
empirically (Sec. 4.1) that the prevailing framework for NVS described in Equations (1–3) is in fact
ill-suited for the self-supervised setting as it does not consider the fundamental property making a
model capable of true NVS: transferability.
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3.2 TRUE NOVEL VIEW SYNTHESIS IS TRANSFERABLE

NVS is simply the ability to render a scene from a user-controllable viewpoint: It is critical that the
same camera pose always results in the same viewpoint being rendered. If the model cannot do this,
it is not a true NVS model, but rather, a frame interpolator. We propose that in the perspective of
NVS as a latent-variable model (Sec. 3.1), controllability is equivalent to transferability and can be
formalized as the property that pose representations transfer between scenes.

Let IA = IA
C ∪ IA

T and IB = IB
C ∪ IB

T be sequences whose target frames IA
T and IB

T share the
same camera motion, i.e. ORACLE[IT

A ] = ORACLE[IT
B ]. Then, we say that an arbitrary NVS model

consisting of core components [POSEENC, SCENEENC, RENDER] produces transferable pose rep-
resentations (or is a true NVS model) if the latent representations

POSEENC
[
IA
C , IA

T

]
=

(
ZA

C , ZA
T

)
and SCENEENC

[
IB
C , ZB

C

]
= SB (5)

and renderer satisfy

RENDER
[
SB , ZA

T

]
≈ IB

T . (6)

This criterion automatically satisfies the autoencoding objective in Equation (3) when IA = IB

and captures the essence of controllable NVS: the ability to apply camera trajectories from one
scene to synthesize views of another scene. We note that conventional oracle NVS models with
POSEENC ≡ ORACLE are automatically transferable (and thus are capable of true NVS) with the
autoencoding objective, as for any scene representation SB

RENDER
[
SB , ORACLE

[
IA
T

]]
= RENDER

[
SB , ORACLE

[
IB
T

]] (3)
≈ IB

T . (7)

3.3 QUANTIFYING TRANSFERABILITY WITH TRUE POSE SIMILARITY (TPS)

Model

Context Scene

Target Frames Novel Views

Different?

Not Transferable!

 Same?  
Transferable!

We introduce a standardized metric to quantify the degree of
transferability of latent pose representations which we call True
Pose Similarity (TPS). Given an ORACLE and trajectory com-
parison metric dSE(3)n , such as Relative Rotation Accuracy
(RRA), Relative Translation Accuracy (RRT), or Area Under
Curve (AUC) which combines the two, we define the TPS be-
tween two sequences of frames IA and IB of equal length to
be the value of the metric between the oracle poses from each
sequence:

TPS
(
IA, IB

)
≡ dSE(3)n

(
ORACLE

[
IA

]
, ORACLE

[
IB

])
. (8)

To quantify the transferability of a [POSEENC, SCENEENC, RENDER] NVS model with TPS, we
consider two arbitrary sequences IA = IA

C ∪ IA
T and IB = IB

C ∪ IB
T . We then use the scene

representation from the second sequence SB and the target latent poses ZA
T from the first sequence

as in Equation (1) to render a new trajectory in the second sequence, leveraging TPS to measure
whether their camera trajectories agree:

TPS
(
IA
T , RENDER

[
SB , ZA

T ]
)
. (9)

We note that this quantity only measures one component of transferability — that the rendered
viewpoints are geometrically consistent, and not also faithful to the context sequence. For instance,
this metric, unlike the definition in Sec. 3.2), can be hacked by a model RENDER[SB , ZA

T ] ≈ IA
T ,

so it is necessary to pair it with a perceptual measure — either qualitative or quantitative — to verify
faithfulness. We highlight that we only rely on ORACLE for benchmarking purposes; our proposed
method does not rely on any external pre-trained or expert-crafted ORACLE for training.

3.4 SOLVING TWO PRINCIPAL PROBLEMS: INTERPOLATION AND INFORMATION LEAKAGE

In the self-supervised setting there is no guarantee of transferability and we demonstrate empirically
that existing models RayZer and RUST fail to produce transferable pose representations under the
TPS metric (Sec. 4.1). In what follows we provide two key insights regarding why these models fail,
and from them derive an approach for learning transferable pose latent representations.
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Input Pair

Pose-Preserving Augmentation Stereo-Monocular NVS

Rendering Loss

Context

Pose 
Source

Pred Target

Figure 1: XFactor combines a [POSEENC, RENDER] stereo-monocular model with our proposed
transferability objective to learn transferable camera pose latents. Given a pair of input images, we
apply two augmentations that minimize pixel content overlap while preserving pose information,
such as inverse masking. The stereo POSEENC extracts the relative pose latent from the first pair.
Then, given the context image from the second pair and the first’s target pose, the renderer is asked
to reconstruct the second’s target.

The Stereo-Monocular Model. We first note that in both RayZer and RUST, their pose encoders
and renderers have access to multiple context views. We find that training such a self-supervised
multi-view model leads to a model that uses the latent “pose” to encode how to interpolate context
views to synthesize the target view. Such a “pose” will not transfer to a different scene, as a different
scene will feature different context views. This is hence not true NVS because it does not allow the
user to define which view they want to render in an arbitrary scene.

To prevent the model from learning to interpolate and instead reason about poses, we propose to
bootstrap a self-supervised multi-view NVS model off of a stereo-monocular model that must al-
ways extrapolate. Specifically, we consider the case where there is only a single context and target
image, respectively — e.g. I = {I1, I2} with IC = {I1} and IT = {I2}. Thus, the POSEENC be-
comes a two-view stereo model, SCENEENC can be absorbed by RENDER, and RENDER is monoc-
ular:

POSEENC [I1, I2] = Z2 and RENDER [I1, Z2] = Ĩ2. (10)

By providing RENDER with only a single image for reconstruction we eliminate the interpolation
path and guide optimization toward learning transferable pose representations. We note that this
approach shares similarities with CroCo (Weinzaepfel et al., 2023), a representation-learning method
which leverages a monocular renderer to promote the learning of depth cues.

The Transferability Objective. While we show that the stereo-monocular model produces trans-
ferable pose representations (Sec. 4.3), it still allows for POSEENC to encode information about
target pixels, rather than a purely geometric description of the relative pose. This again provides an
easier “off ramp” for RENDER, which does not have to perform full NVS but can cheat by decoding
pixel information smuggled into the target pose latent.

We propose to discourage the entanglement of pixel information by explicitly defining the training
objective as transferability: Given two pairs of frames IA = {IA1 , IA2 } and IB = {IB1 , IB2 } which
are known to share the same relative camera pose we ask that the relative pose latent extracted from
the first sequence must be able to render the target image from the second,

L ≡ dI
(
IB2 , RENDER

[
IB1 , POSEENC

[
IA1 , IA2

]])
, (11)

which we call the transferability objective. However, despite the obvious benefits of imposing
transferability as the training objective, it less clear how to get such pairs in practice, especially
when training with real-world data.

To this end our third and final key insight is that given any sequence of frames I , any two frame-wise
augmentations AUG and AUG that preserve the ground-truth camera pose, i.e

ORACLE [AUG[I]] = ORACLE [AUG[I]] = ORACLE [I] , (12)

can be used to produce two new sequences which share identical camera motion but very little pixel
information. Combining this insight with the transferability objective gives rise to a novel training
procedure. In practice, given an input pair we implement this strategy by randomly generating two
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equal-area masks whose union covers the whole image, and apply these in combination with color-
jitter and blur to generate new pairs. Then, following the transferability objective in Equation (11),
POSEENC extracts the relative pose latent from the first pair with which RENDER is asked to render
the target image in the second pair given the first image as context.

We note that prior self-supervised methods RayZer and RUST also seek to prevent information
leakage though with different strategies. RayZer takes a more explicit approach by bottlenecking
the pose latents via parameterization as elements of SE(3). However, as we show empirically in
both benchmark comparisons and ablations, an explicit SE(3) parameterization not only fails to
provide any degree of transferability in the multi-view setting, but in fact degrades it compared to an
unconstrained stereo-monocular baseline. In contrast, RUST takes an approach that is more similar
to our own wherein the target pose latent is estimated from the scene representation and a partial
view of the target image, and the renderer asked to reconstruct the full target. However, RUST still
suffers from interpolative bias via multi-view training and an augmentation strategy that does not
eliminate much of the pixel content overlap.

3.5 XFACTOR: A MODEL FOR TRUE SELF-SUPERVISED NOVEL VIEW SYNTHESIS

Combining the [POSEENC, RENDER] stereo-monocular model with the transferability objective
gives rise to XFactor (Figure 1) — short for Transferable[X] Latent Factorization[Factor]. As we
demonstrate empirically in (Sec. 4.1), XFactor produces a fully transferable latent pose representa-
tion and to our knowledge is the first fully self-supervised model to achieve true NVS in the sense of
Equations (5 – 6). We also note that XFactor does so without any geometric or 3D inductive biases
whatsoever, demonstrating that such design choices are not a necessary condition for transferable
latent poses. Both POSEENC and RENDER are implemented as multi-view VITs. Architectural and
implementation details are included in Appendix A.

Multi-View XFactor. Given a trained XFactor stereo-monocular model we extend it to a multi-
view model by fine-tuning [POSEENC, RENDER] in a secondary training stage. Here each multi-
frame sequence I = IC ∪ {IT } is split into two disjoints sets consisting of context images and a
single target image, with the latter chosen randomly. The reference image IR ∈ IC represents the
view relative to which all poses will be expressed, and is chosen to be the frame with the minimum
maximal baseline between all other frames (i.e. the “middlest”). We continue to use pose-preserving
augmentations that are, however, now applied to all frames. For each sequence, POSEENC is applied
pair-wise to predict the relative pose latents between the reference frame and all others. Then,
RENDER is asked to render the target image of the second sequence with the second’s context frames
and poses and the target pose from the first.

4 EXPERIMENTS

We provide empirical evidence that XFactor produces a transferable camera pose representation
(4.1) which well-predicts oracle SE(3) poses when probed (4.2). Last, we show through abla-
tions that combining the stereo-monocular model with our transferability objective is ideal for both
achieving transferability and producing a pose representation relative to a variety of alternative de-
sign decisions (4.3). In addition, we also report results on the benchmark of auto-encoding video
sequences established by Jiang et al. (2025) in Appendix B.

Comparisons. We compare XFactor against two strong existing self-supervised NVS models:
RayZer (Jiang et al., 2025) the current self-supervised state-of-the-art, and RUST (Sajjadi et al.,
2023) which also estimates poses from partial views and does not make use of any 3D inductive
bias. At this time, neither the authors of RayZer nor RUST have published code. We implement
both models following the respective papers and shared our RayZer implementation with the au-
thors, who confirmed it is faithful. For RUST, we view their principal contribution as predicting
poses between full and partial views. Our implementation differs slightly from that of the authors:
we do not leverage a set-latent scene representation, instead absorbing the scene encoder into a
multi-view POSEENC and RENDER; POSEENC sees the set of all context views as well as the par-
tial target view. Thus, comparisons against RUST can be seen as a comparison with training a
multi-view model end-to-end with a full-to-partial objective instead of transferability.
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XFactor (Ours) RayZer (Jiang et al., 2025) RUST (Sajjadi et al., 2023)

Metric RE10K DL3DV MVImgNet CO3Dv2 RE10K DL3DV MVImgNet CO3Dv2 RE10K DL3DV MVImgNet CO3Dv2

R. Acc
(↑)

10° 98.6 95.6 88.1 88.5 76.9 44.9 9.57 31.2 87.2 62.7 12.4 4.2
20° 99.6 98.0 96.6 95.7 85.5 59.6 18.6 47.4 95.5 84.3 31.9 69.5
30° 99.7 98.8 98.2 97.7 95.1 81.4 43.0 76.1 97.9 92.9 48.6 83.4

T. Acc
(↑)

10° 64.1 67.2 66.8 35.5 7.8 9.5 6.8 4.6 13.8 12.7 9.1 7.2
20° 83.5 87.9 89.4 60.9 20.3 24.4 22.1 16.0 32.1 31.8 27.6 22.2
30° 90.0 93.9 95.2 73.8 32.1 38.8 37.7 29.1 46.3 47.5 48.6 83.4

AUC
(↑)

10° 34.6 34.8 28.2 14.0 2.3 1.3 3.3 4.3 5.2 3.1 0.9 1.1
20° 55.2 57.2 53.4 31.2 7.6 5.9 2.6 2.7 13.8 10.8 4.1 5.4
30° 65.8 68.3 66.2 43.2 13.4 11.8 6.7 6.8 22.1 19.3 9.8 11.7

FID (↓) 4.5 26.6 6.2 8.4 43.0 91.5 40.4 35.8 16.2 61.1 24.7 21.5

Table 1: The Transferability Test. We compare the transferability of XFactor’s, RayZer’s, and
RUST’s pose representations across four datasets. We evaluate using TPS with RRA, RTA, and AUC
at different error thresholds. For all metrics except FID, higher is better. Visualizations of transfer
renderings and camera trajectories extracted with ORACLE are shown for each method above. The
target trajectory is visualized in red, XFactor in green, RayZer in blue, and RUST in gold.

Datasets and Training. We train all models on a large-scale, aggregate dataset consisting of real-
world videos at both scene and object levels. Specifically, our dataset consists of RE10K (Zhou et al.,
2018), DL3DV (Ling et al., 2024), MVImgNet (Yu et al., 2023), and CO3Dv2 (Reizenstein et al.,
2021). Frames are first center-cropped and then resized to 256 × 256 pixels. Complete training and
implementation details can be found in Appendix B.

4.1 TRANSFERABILITY

Our principal evaluation concerns transferability. Here, we compare multi-view XFactor, RayZer,
and RUST on the evaluation splits of our aggregate dataset: For each dataset, we randomly draw
4000 pairs of sequences, select five equally spaced target frames, and compute the TPS as in Equa-
tion (9) with respect to RRA, RTA, and AUC at 10° intervals. We also compute the Frechet Inception
Distance (FID) between the statistics of the sequences of input and rendered target frames as a gen-
eral measure of transferred rendering quality.

The results, averaged over all sequences per dataset, and qualitative comparisons are shown in Ta-
ble 1. XFactor significantly outperforms the other methods, reporting an AUC @ 20° over five times
that of RayZer and RUST. Notably, despite sometimes producing reasonable looking renderings,
both RayZer and RUST completely fail the transferability test and are not capable of true NVS. This
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XFactor (Ours) RayZer (Jiang et al., 2025) RUST (Sajjadi et al., 2023)

Metric RE10K DL3DV MVImgNet CO3Dv2 RE10K DL3DV MVImgNet CO3Dv2 RE10K DL3DV MVImgNet CO3Dv2

R. Acc
(↑)

10° 99.3 97.5 96.9 95.3 99.1 95.4 96.0 91.8 97.4 90.4 82.7 85.0
20° 99.8 100 99.1 97.7 99.9 98.8 99.4 97.2 99.1 95.5 94.5 94.0
30° 99.8 100 99.4 98.4 99.9 99.4 99.7 98.5 99.4 97.1 96.8 96.3

T. Acc
(↑)

10° 73.95 87.5 93.7 67.9 57.1 66.1 87.3 51.0 49.1 57.1 74.8 44.3
20° 87.5 96.1 98.4 82.9 78.6 85.0 97.5 73.3 72.8 78.6 93.1 68.4
30° 91.9 97.9 99.6 88.5 86.6 90.4 98.7 81.5 82.7 85.2 96.1 77.9

AUC
(↑)

10° 46.8 60.1 66.4 42.6 29.6 32.2 46.4 25.3 24.6 27.9 31.5 18.6
20° 64.5 76.3 78.9 58.5 49.8 55.2 70.0 43.5 43.7 48.4 65.1 37.7
30° 72.9 83.3 85.4 67.5 60.8 66.2 79.4 54.8 55.1 59.2 69.2 49.3

Table 2: Pose Probe Accuracy. We probe accuracy trained to predict ground-truth SE(3) poses
from the latents of each model in terms of RRA, RTA, and AUC. We show several examples of
XFactor’s poses (green) relative to ORACLE ground-truth (red). Zoom in to see details.

is likely due to the susceptibility of their design toward learning interpolation latents due to end-to-
end multi-view training with autoencoding. Of the two, RUST’s performance is slightly better. We
attribute this to its strategy of estimating pose latents between full and partial views as it brings its
objective to a place between transferability and autoencoding.

4.2 POSE PROBE

Next, we evaluate the degree to which each model’s latent pose representation encodes information
about the ORACLE camera poses. To do so, we freeze the POSEENC from each model and train
a three-layer MLP to predict the ground-truth SE(3) camera poses extracted by ORACLE from the
estimated pose latents. We evaluate the quality of the probe-extracted trajectories relative to the
ground-truth in terms of RRA, RTA, and AUC with the results shown in Table 2. Visualizations of
poses extracted from XFactor’s representations are shown above.

Overall, XFactor’s pose latents provide a superior characterization of the oracle poses, with high
AUC values at 10° and 20° and outperforming the other methods significantly. It follows that our
stereo-monocular model combined with our transferability objective also doubles as an effective
method for self-supervised representation learning of 3D camera pose information. However, unlike
the transferability test, neither RayZer nor RUST completely fail and in fact both learn a reasonably
informative representation. This suggests that while transferability can improve geometric reason-
ing, evidence of the latter does not automatically lead to the former.

4.3 ABLATIONS

Here we ablate the influence of the fundamental components of XFactor’s design — the stereo-
monocular model and transferability objective. To do so, we train and evaluate several alterna-
tive models each representing different potential design decisions, and compare against stereo-
monocular XFactor in terms of transferability and pose probe accuracy.

To ablate the influence of a stereo-monocular model relative to multi-view, we train two additional
models with the transferability objective: A stereo POSEENC which uses a single additional con-
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XFactor (Ours) Bottleneck Unconstrained

Metric RE10K DL3DV MVImgNet CO3Dv2 RE10K DL3DV MVImgNet CO3Dv2 RE10K DL3DV MVImgNet CO3Dv2

Tr
an

sf
er R 20° (↑) 99.9 98.36 96.5 98.2 99.9 97.7 96.7 98.1 99.8 98.0 95.3 97.9

T 20° (↑) 75.1 76.6 84.1 33.05 70.4 72.6 85.3 35.5 64.3 70.4 81.0 31.99
AUC 20° (↑) 47.2 44.8 49.3 14.6 40.6 41.4 50.8 15.8 36.8 39.4 47.0 14.0
FID (↓) 3.40 34.7 7.74 6.14 3.29 33.9 6.79 5.56 3.26 31.7 6.95 5.80

Pr
ob

e R 20° (↑) 99.5 98.5 99.7 97.5 99.2 96.9 99.4 96.7 99.3 97.6 99.5 97.1
T 20° (↑) 79.4 89.2 96.1 77.4 74.3 83.0 95.5 74.4 76.7 85.4 95.8 75.4
AUC 20° (↑) 54.8 61.2 71.5 50.3 47.2 51.9 71.0 48.6 49.8 51.2 70.8 48.4

SE(3) & Plücker (Jiang et al., 2025) Additional View: Decoder Additional View: Encoder + Decoder

Metric RE10K DL3DV MVImgNet CO3Dv2 RE10K DL3DV MVImgNet CO3Dv2 RE10K DL3DV MVImgNet CO3Dv2

Tr
an

sf
er R 20° (↑) 99.8 94.2 0.826 95.6 99.7 94.2 86.1 97.7 99.6 93.9 43.5 96.2

T 20° (↑) 65.3 58.6 70.7 31.7 62.0 52.2 53.1 35.3 18.2 19.7 14.2 10.4
AUC 20° (↑) 35.7 26.4 28.4 12.6 33.1 25.1 22.3 14.9 7.2 6.3 1.2 3.2
FID (↓) 3.53 36.1 7.37 6.11 5.77 50.5 16.2 9.86 5.0 36.6 6.4 9.1

Pr
ob

e R 20° (↑) 99.0 98.2 99.1 96.2 98.6 96.1 98.8 95.8 98.3 95.4 95.3 92.2
T 20° (↑) 77.9 85.0 95.4 72.8 74.7 78.4 94.3 70.6 73.9 88.4 93.9 74.8
AUC 20° (↑) 50.6 56.3 67.7 45.2 48.0 47.4 64.2 42.6 47.4 58.1 65.9 48.6

Table 3: Ablations. We ablate potential alternative design decisions using stereo-monocular XFac-
tor as a starting point. Models are compared in terms of transferability and pose probe efficacy.

text view in RENDER (Additional View: Decoder), essentially our proposed multi-view XFactor
trained end-to-end; A full multi-view model wherein both POSEENC and RENDER see the addi-
tional context view (Additional View: Encoder + Decoder). To evaluate the effectiveness of the
transferability objective we train three stereo-monocular models all with the standard autoencoding
objective: One without any additional modification (Unconstrained); One with 16-dimensional pose
latents, representing a bottleneck relative to the 256-dimensional latents used in XFactor (Bottle-
neck); One which predicts SE(3) poses and camera intrinsics and uses Plücker embeddings in the
decoder following Jiang et al. (2025) (SE(3) & Plücker).

The results are shown in Table 3. While XFactor overall performs best out of all models, we see
that transitioning to multi-view training, first by adding only an additional context view to RENDER,
and then by adding a context view to POSEENC, progressively degrades, then completely destroys
transferability. In contrast, the bottlenecked stereo-monocular model performs competitively with
XFactor in terms of transferability, though XFactor’s latents provide a comprehensively stronger
characterization of real-world pose. However, we note that a bottlenecking strategy may not always
be desirable and can limit descriptiveness, for instance, if one seeks a representation that also en-
codes changes in lighting or other evolving phenomena in a scene. In contrast, the transferability
objective improves transferability without an explicit design constraint. Counterintuitively, we find
that asking the stereo-monocular model to predict explicit SE(3) poses and camera parameters in
fact significantly degrades transferability relative to both XFactor and the unconstrained baseline.

5 DISCUSSION

Limitations. While our model has claim to being the first geometry-free, fully-self supervised
method to achieve true NVS, several limitations are outstanding. First, the restriction of POSEENC
to a stereo model precludes ultra-wide baseline pose estimation in a single forward pass. In principle,
a multi-view POSEENC can robustly estimate latent poses across arbitrary baselines as long as it is
possible to chain together a trajectory between frames that share overlap. In fact, such a model
is highly effective in the supervised regime (Wang et al., 2025), however, applying it in a self-
supervised setting without introducing interpolative bias remains an open problem. Second, the
rendering quality of transferred frames can exhibit blurring and warping artifacts which increase in
frequency as the target poses diverge from those of the context. We posit this stems from the fact
that XFactor is a deterministic, rather than generative, model and that the artifacts are a result of the
model trying to resolve uncertainty without currently being equipped with the proper tools to do so.

Conclusion. We have presented a new characterization of NVS that does not rely on notions from
conventional multi-view geometry, instead formulating it as a pure machine-learning task in the
form of a latent variable model. We identified transferability as the key input-output behavior of
NVS. Based on our analysis, we introduced XFactor, the first geometry-free self-supervised model
capable of true novel view synthesis. We provided large-scale experiments on real-world datasets
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that demonstrate XFactor’s efficacy, and validate key design decisions with careful ablation studies.
We hope that our analysis will encourage the community to seek new formulations of classic 3D
vision problems based on key principles of machine learning.
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A XFACTOR: ARCHITECTURE AND IMPLEMENTATION DETAILS

The XFactor POSEENC and RENDER modules are implemented as multi-view ViTs with RoPE
positional embeddings (Su et al., 2023). Following VGGT (Wang et al., 2025), we fuse global and
per-image attention inside each layer. While initially trained in the stereo-monocular setting, both
POSEENC and RENDER are capable of handling an arbitrary number of views independent of the
weights, though we only take advantage of this capability for RENDER when extending to multi-
view. During training, both POSEENC and RENDER are passed a binary attention mask encoding
the randomly generated disjoint partitions (AUG, AUG) which allows for encoding and rendering
with respect to the transferability objective to be computed in a single forward pass.

POSEENC consists of local-global attention layers, followed by a pose head in the form of an MLP.
A single global token is initialized and copied across the context and target view, representing the
context and target pose latents. The attention layers are equivariant under swapping of the context
and target image. Symmetry is broken by the pose head, which is designed such that the context
pose is always mapped to the zero vector.

RENDER is implemented similarly, consisting of local-global attention layers and an MLP pixel
prediction head. The input pose latents are broadcasted across the token dimension, with the context
pose latents fused to the pacification of the target image and the result is concatenated along the
token dimension with the broadcasted target latents to form an internal two-view representation.
After applying the attention layers, the features corresponding to the broadcasted target latents are
extracted from the position of second image and passed to the pixel prediction head.

During training, augmentation masks are generated per batch example by splitting the patchified
image plane into quadrants and randomly partitioning them into two groups of two. This not only
allows for masks which either equally partition the image into left/right or upper/lower halves, but
also diagonalized partitions. There also exists a small chance that an image pair will not be masked,
in which case transfer objective for that example reduces to the intra-sequence autoencoding objec-
tive and gives the model an opportunity to reason about the whole images. Augmentations are not
applied during inference.

B EVALUATION

Comparisons and Training. In our comparisons, we initialize all of XFactor’s, RayZer’s, and
RUST’s POSEENC, SCENEENC (used only in RayZer), and RENDER modules with eight trans-
former layers, 1024 features, 16 heads, and a patch size of 16, resulting in 16, 24, and 16 total layers
for each model, respectively. Both XFactor and RUST use a latent pose dimension of 256. We stan-
dardize comparisons such that all methods render with 5 context views. Multi-view XFactor and
RUST each take the reference view as one of the context views and along with a single additional
target view. For RayZer, we use an additional 5 target views as is done in (Jiang et al., 2025).

We train with two separate baselines, with one set used in both training stereo-monocular XFac-
tor and ablations, and the other used for both training multi-view XFactor, RayZer, RUST and all
comparison evaluations. For the former, pairs of images are formed by randomly sampling frames
from each dataset up to maximum baseline consisting of 100, 12, 12, and 20 frames for RE10K,
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XFactor (Ours) RayZer (Jiang et al., 2025) RUST (Sajjadi et al., 2023)

Metric RE10K DL3DV MVImgNet CO3Dv2 RE10K DL3DV MVImgNet CO3Dv2 RE10K DL3DV MVImgNet CO3Dv2

PSNR (↑) 26.1 23.2 24.8 26.5 22.9 20.3 21.4 22.6 18.9 17.7 19.1 19.3
SSIM (↑) 0.859 0.766 0.733 0.821 0.809 0.676 0.622 0.728 0.71 0.571 0.593 0.662
LPIPS (↓) 0.114 0.157 0.194 0.1677 0.135 0.188 0.258 0.205 0.220 0.286 0.3561 0.290

Table 4: Autoencoding Reconstruction Quality.

DL3DV, MVImgNet, and CO3Dv2, respectively. These baselines were heuristically selected based
on dataset difficulty and to ensure at least a small amount of overlap between pairs of frames. For
fine-tuning, and training RayZer and RUST, we simply double the stereo-monocular baseline.

We define the image distance metric dI used to compute the transfer objective as a linear combina-
tion of the L1 norm on the difference between the ground truth and predicted target image pixels and
the LPIPS loss (Zhang et al., 2018), with a weight of 0.5 on the latter. We train stereo-monocular
XFactor, RayZer, and RUST all with the AdamW optimizer (Kingma & Ba, 2014), using a batch
size of 256 and a learning rate of 4.0 × 10−4 for 100,000 iterations, decaying to 1.0 × 10−4 on a
cosine schedule. To extend XFactor to multi-view we fine-tune for an additional 100,000 iterations.

We train stereo-monocular XFactor on 4 NVIDIA H200 GPUs, taking approximately 15 hours to
reach 100,000 iterations. Multi-view XFactor is trained on 8 NVIDIA H200 GPUs, taking approxi-
mately 48 hours to reach 100,000 iterations.

The pose probe is a three-layer MLP with a feature dimension of 256. The probe is trained for
10,000 iterations with a batch size of 64. The experiments differ slightly between the comparisons
in Sec. 4.2 and ablations in Sec. 4.3. In the comparisons, the probe is used to predict five poses
in a trajectory, and a scale-invariant loss is applied between the predicted and ORACLE-extracted
trajectories. In the ablations, the probe is used to predict the relative pose between two frames and
the loss is computed directly between the predicted pose and that of the ORACLE.

Autoencoding Reconstruction. Here we report results on autoencoding reconstruction for each
model. This is simply the ability to render target frames from a sequence using scene and pose
representations from the same sequence. While this work argues that this task is fundamentally
not equivalent to true NVS and is purely a measure of a model’s ability to act an interpolator, it
is the principal evaluation benchmark used in RayZer and also provides a quantitative measure of
reconstruction quality so we include it for completeness.

Autoencoding reconstruction results are shown in Table 4 in terms of standard perceptual metrics
including PSNR, SSIM, and LPIPS averaged across sequences from each dataset. In this setting
XFactor and RayZer achieve good reconstruction quality.
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