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A. Field convolutions commute with isometries
Here we offer a detailed proof of the claim made in Sec-

tion 4 that field convolution commutes with the action of
isometries. That is, given any X ∈ Γ(TM) and filter
f ∈ L2(C), if Ψ : M → N is an isometry, then

dΨ
[(
X ∗ f

)
(p)
]

= [dΨ(X) ∗ f ]
(
Ψ(p)

)
. (1)

To see this, consider surfaces M and N and any two
points p ∈ M and p′ ∈ N . Let N ⊂ M and N ′ ⊂ N
be ε−balls about the points and suppose that N and N ′ are
isometric. That is, there exists a map Ψ : M → N taking p
to p′ and satisfying ∀qi ∈ N ,

d (q0, q1) = d (q′0, q
′
1) , q′i = Ψ(qi) ∈ N ′,

where d ( · , · ) is the geodesic distance.
Let X ′ ∈ Γ(TN) be the push-forward of X under dΨ

where, using the tangent space representation of Knoppel et
al. [3], X ′|p′ = ρ′p′ e

iφ′
p′ . For any two points a, b ∈M , de-

note the logarithm of a with respect to b and the change in
angle resulting from the parallel transport along the shortest
geodesic from b to a as logb a = rba e

iθba and ϕab, respec-
tively. It follows that ∀q ∈ N [2],

ρ′q′ = ρq

rq′p′ = rqp

and
and

φ′q′ = φq + ψq,

θq′p′ = θqp + ψq,

ϕp′q′ = ϕpq + ψp − ψq,

where ψp is the angle of rotation corresponding to the action
of the differential dΨ|p, taking vectors in TpM to Tp′N.
(Recall that as Ψ is an isometry, dΨ is an orthogonal trans-
formation.) Then, in the expression for the field convolution

(X ′ ∗ f)|p′ =

∫
M

ρq′e
i(φq′+ϕp′q′ ) f

(
rq′p′e

i(θq′p′−φq′)
)
dq′

we have

ρ′q′ e
i(φ′

q′+ϕp′q′) = ρq e
i(φq+ϕpq+ψp),

rq′p′ e
i(θq′p′−φ′

q′) = rqp e
i(θqp−φq),

with the measures dq and dq′ satisfying dq′ = dq since
dΨ|q is an orthogonal transformation. From the def-
inition of field convolution, this gives (X ′ ∗ f)|p′ =

eiψp (X ∗ f)|p which is equivalent to dΨ
[(
X ∗ f

)
(p)
]

=

[dΨ(X) ∗ f ]
(
Ψ(p)

)
as desired.

B. Learned Gradients
In practice, inputs to surface CNNs are often scalar fea-

tures, such as the raw 3D positions of points. To lift such
features to a vector field, we use a learnable operation anal-
ogous to a weighted gradient calculation. For any function
ξ ∈ L2(V ) we learn the magnitude and direction of its “gra-
dient” separately, with respect to compactly supported radi-
ally isotropic filters f1, f2 ∈ L2(C). That is, we learn the
vector field Φf1 : V → C and scalar field Pf2 : V → R
with

Φf1(p) = eiβ
∑
q∈Np

wq (ξ(q)− ξ(p)) f1(rpq) e
iθpq , (2)

Pf2(p) =
∑
q∈Np

wq ξ(q) f2(rpq) (3)

with wq, rpq, θpq defined as in Equation (7) (the latter two
parameters corresponding to logp q) and β a learnable ro-
tational offset. Using these, we define the “gradient” of ξ
with respect to f1 and f2 as the vector field

P 2
f2(p)

Φf1(p)

‖Φf1(p)‖
(4)

While this approach ensures that scalar features are passed
directly to vector fields, we do not consider it to be a critical
part of our framework and it can be replaced by a linear
layer with only a small decrease in performance.

C. Feature Matching Experiments
Here we provide a detailed explanation of how our fea-

ture matching experiments are performed in Section 6.5.
Each pair in the SHREC 2019 Correspondence Dataset [1]
consists of a model mesh VM and a scene mesh VS , with



the dense ground-truth correspondence mapping the lat-
ter to the former. We randomly generate correspondences
CSM = {(si, mi)} ⊂ VS × VM and non-correspondences
NSM = (VS × VM ) \ CSM by selecting 2048 points on
both the model and the scene mesh using farthest point
sampling, mapping the sampled scene points to the model
mesh using the ground truth correspondence, and associ-
ating each mapped scene point to the geodesically nearest
sampled point on the model.

In training, the objective of the network is to make the
outputs for corresponding and non-corresponding pairs as
similar and dissimilar as possible, respectively [4, 5]. To
this end we use a twin network, wherein each mesh in
a pair is fed to the same network which learns a com-
pact 16-dimensional descriptor F at each point. Specifi-
cally, for each pair in each epoch, we randomly subsample
512 pairs of corresponding and non-corresponding points,
PSM = C512

SM ∪N512
SM and minimize the twin loss [8]

L (PSM ) =
∑

(s,m)∈PSM

αs,m‖FS(s)− FM (m) ‖2+

(1− αs,m) max
(

0, 5− ‖FS(s)− FM (m) ‖2
)
,

(5)

where αs,m = 1 if (s, m) ∈ CSM or is set to a random
variable between 0 and 0.2 otherwise.

We compute precision-recall curves as follows. Given
a sampled point in the scene mesh s ∈ VS , we sort all
sampled model points based on descriptor distance, giving
{m1, . . . , mK} ⊂ VM , with

‖FS(s)− FM (mi)‖ ≤ ‖FS(s)− FM (mi+1)‖,

for 1 ≤ i ≤ K − 1. We defineMp ⊂ VM to be the set of
sampled model points that are valid matches with p, which
consists of all sampled model points whose ground-truth
correspondence lies within a geodesic ball of radius 0.05
about p. While this corresponds to a slightly more relaxed
definition of correspondence, we find that all methods per-
form better maintaining a stricter notion of correspondence
during training. Then, following [7, 6] the precision Pp and
recallRp assigned to p are defined as functions of the top r
model keypoints,

Pp(r) =

∣∣∣Mp ∩ {mi}i≤r
∣∣∣

r
, (6)

Rp(r) =

∣∣∣Mp ∩ {m i}i≤r
∣∣∣

|Mp|
. (7)
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and Remco Veltkamp, editors, Eurographics Workshop on 3D
Object Retrieval. The Eurographics Association, 2019. 1

[2] Jean H Gallier and Jocelyn Quaintance. Differential Geometry
and Lie Groups: A Computational Perspective, volume 12.
Springer Nature, 2020. 1

[3] Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter
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