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Abstract

Convolution underlies a variety of applications in computer vision and graphics,
including efficient filtering, analysis, simulation, and neural networks. However,
convolution has an inherent limitation: when convolving a signal with a filter, the
filter orientation remains fixed as it travels over the domain, and convolution loses
effectiveness in the presence of deformations that change alignment of the signal
relative to the local frame. This problem metastasizes when attempting to general-
ize convolution to domains without a canonical orientation, such as the surfaces of
3D shapes, making it impossible to locally align signals and filters in a consistent
manner.

This thesis presents a unified framework for transformation-equivariant con-
volutions on arbitrary homogeneous spaces and 2D Riemannian manifolds called
extended convolution. This approach is based on the the following observation: to
achieve equivariance to an arbitrary class of transformations, we only need to con-
sider how the positions of points as seen in the frames of their neighbors deform.
By defining an equivariant frame operator at each point with which we align the
filter, we correct for the change in the relative positions induced by the transfor-
mations. This construction places no constraints on the filters, making extended
convolution highly descriptive. Furthermore, the framework can handle arbitrary
transformation groups, including higher-dimensional non-compact groups that act
non-linearly on the domain. Critically, extended convolution naturally generalizes
to arbitrary 2D Riemannian manifolds as it does not need a canonical coordinate
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system to be applied.
The power and utility of extended convolution is demonstrated in several ap-

plications. A unified framework for image and surface feature descriptors called
Extended Convolution Histogram of Orientations (ECHO) is proposed, based on the
optimal filters maximizing the response of the extended convolution at a given
point. Using the generalization of extended convolution to surface vector fields,
state-of-the-art surface convolutional neural networks (CNNs) are constructed. Last,
we move beyond rotations and isometries and use extended convolution to design
spherical CNNs equivariant to Möbius transformations, representing a first step to-
ward conformally-equivariant surface networks.
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Chapter 1

Introduction

Convolutionunderpins a number of applications in vision and geometry processing,
including pattern recognition and compression of images [KJM05, Wal91], symme-
try detection in 2D images [KS06] and 3D models [KFR04], reconstruction of 3D sur-
faces [SBS06], inversion of the Radon transform for medical imaging [KS01, Nat01],
and convolutional neural networks (CNNs) [FM82, LBD+89]. Convolution takes two
inputs: a signal 𝜓 and a filter 𝑓 . The signal 𝜓 is the input data – an image, volumet-
ric data, network features, really any reasonable function. The filter 𝑓 is a function
that assigns weights to points based on their position relative to their neighbors. A
simple example of a filter is a Gaussian,

𝑓 (𝑧) = 𝑒−|𝑧 |
2
.

As a weight function, it assigns the largest value to the origin, and increasingly
smaller values to points farther away. Traditionally, the signal and filter belong to
either 𝐿2(ℝ𝑛,ℝ) or 𝐿2(ℝ𝑛,ℂ), the space of either real- or complex-valued square-
integrable functions on 𝑛−dimensional Euclidean space.

Formally, the convolution of 𝜓 with 𝑓 is the function in 𝐿2(ℝ𝑛,ℝ) with
(𝜓 ∗ 𝑓 ) ( 𝑦) =

∫
ℝ𝑛

𝜓(𝑧) 𝑓 ( 𝑦 − 𝑧) 𝑑𝑧. (1.1)
Here, the filter also slides across the signal, and at each point 𝑦 the value of the
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signal is replaced by the linear combination of the neighboring values and filter
weights determined by 𝑦 − 𝑧, the position of the point as seen from its neighbors.

Convolution is effective in applications because it responds to a contextualized
window on the signal, forcing the task to be translation-equivariant. In other words,
for any signal 𝜓, filter 𝑓 , and translation 𝑡, convolution commutes with the action
of 𝑡 by left shifts, [𝑡 𝜓] (𝑧) = 𝜓(𝑧 − 𝑡) with

𝑡 (𝜓 ∗ 𝑓 ) = (𝑡 𝜓 ∗ 𝑓 ),

which follows easily from a change of variables in Equation (1.1). In particular,
this property has been fundamental to the success of CNNs due to the translational
symmetries inherent in most vision tasks [FM82, LBD+89, LB+95], as the image data
can usually be expected to share a consistent alignment relative to the image plane.
For example, in a series of images capturedby a car’s dashboard camera, the surface
of the roadmay always align with the horizontal axis of image plane, so the motion
of pedestrians crossing the street can be well-described by lateral shifts.

However, perception and analysis frameworks based on convolution run into
trouble when data isn’t consistently aligned, as is the case when salient objects of
features appear in a collection of images in different orientations. While convolu-
tion commutes with translations, it does not commute with rotations, dilations, or
more complex types of transformations – convolving an image with a filter will pro-
duce a different response at rotated or scaled version of the same pattern in the
image. To overcome these limitations, a simple approach may consist of quantiz-
ing the rotation angle and pooling responses over different filter orientations. For
CNNs, training data can be extended by applying randomly sampled rotations to
network inputs, forcing it to learn a measure of rotation-equivariance. That said,
these approaches aren’t readily generalizable to more complex groups of transfor-
mations that are better representative of the kinds of deformations found in real-
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world data, which cannot be parameterized on compact domains.
These problems metastasize when attempting to generalize convolution to do-

mains without either global or local, repeatable coordinate systems, such as the
surfaces of 3D shapes. The lack of a such a coordinate systemmakes it impossible to
locally align signals and filters in a consistent manner, precluding the simple trans-
position of Euclidean notions of convolution to curved surfaces. To circumvent this
problem, various approaches have tried to impose a regular grid structure, by ei-
ther inducing a planar parameterization via projections [SMKLM15], cuts [SBR16],
and tilings [MGA+17] or volumetric rasterization [WSK+15]. Unfortunately, neither
method provides a compelling solution – planar projections induce distortion and
volumetric approaches are computationally expensive and tend to lose effective-
ness in the presence of non-rigid shape deformations.

1.1 Equivariant convolutions

The advent of deep learning in imaging and vision has coincided with an increased
awareness of the limitations of standard convolutional techniques, and has facil-
itated the development of more general convolutional frameworks equivariant to
transformation groups. Thesemethods canbebroadly categorizedbased onwhether
convolution is integrated over the group itself or the homogeneous space – the do-
main on which it acts. Rotation-equivariant convolutions based on the former ap-
proach were integrated into CNNs by [CW16, CGW19], where kernels are param-
eterized in terms of equivariant basis functions on the group and convolution is
performed by lifting features from the domain and searching over all possible trans-
formations of the features or kernels. This approach is highly effective when con-
sidering the action of discrete groups on features sampled on a regular lattice, and
has since been extended to handle the continuous group of rotations in both two
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and three dimensions [CGKW18, LW21]. However, this approach isn’t readily gen-
eralizable – either theoretically or computationally – to higher-dimensional or non-
compact groups, where there are more parameters to integrate over, the domains
of integration are unbounded, and the representations are infinite-dimensional.

Equivariant CNNs that integrate over the domain on which the group acts can
trace their lineage to earlier work on steerable filters [FA91, SF96, THO99]. Kernels
are parameterized in terms of equivariant basis functions on the domain that rotate
or dilatewith the local coordinate system [WGTB17,WC19,WW19, SSS19a], and this
approach has been extended to both volumetric domains [WC19] and point clouds
[QSMG17]. Unfortunately, finite-dimensional equivariant bases often don’t exist for
non-commutative and non-compact transformation groups of interest, limiting the
practical scope of these approaches.

Critically, the notion of rotation-equivariance has facilitated the generalization
of convolutional frameworks to domainswithout canonical coordinate systems such
as the sphere [CW16, EMD20] and arbitrary 2D surfaces. In the latter case, convolu-
tion is defined intrinsically over theRiemannianmanifold and is isometry-equivariant
– providing a repeatable response in the presence of distance-preserving transfor-
mations. These approaches can generally be classified in relation to two emerging
paradigms: diffusive convolutions and transporting convolutions. In the former,
convolution operations are closely related to heat diffusion on surfaces wherein
heat (e.g. Gaussian) kernels are used to propagate scalar features. Despite their suc-
cess in a variety of scenarios, most notably in dense shape correspondence, these
methods face an intractable problem: radially symmetric filters are individually
undiscriminating and diffusive frameworks are not naturally suited to handle the
orientation ambiguity problem introducedby theuse ofmoredescriptive, anisotropic
kernels.

Recently, several techniques havebeen introduced for surface convolutions based
4



onparallel transport [PO18, dHWCW20,WEH20]. In contrast to diffusive approaches,
transporting convolutions are designed specifically to address the rotation ambigu-
ity problem by propagating tangent vector features that transform with local coor-
dinate systems. However, to make the convolution independent of the choice of
local coordinate frame, most existing methods strongly constrain the class of filters
that can be used.

1.2 Beyond rotations, dilations, and isometries

Despite their success, rotation- and isometry-equivariant CNNs can fail to achieve
adequate performance in the presence of the kinds of complex deformations com-
monly found in real-world image and shape data [MKK21]. Such deformations may
potentially be better modeled by higher-dimensional transformation groups. For
example, homographies (projective transformations) better approximate changes
in camera viewpoints than similarities (rotations and dilations) [HZ03] and, for
spherical images, can be represented using conformal (angle-preserving) transfor-
mations [EMSJB14, SS16]. For geometry processing, conformal transformations en-
compass a broader class of deformations than isometries that still preserve the
sense of ‘shape’ [LPRM02, GWC+04, CPS11].

While the importance of these transformation groups is well known, there exists
little work generalizing equivariant convolutions to handle them. This is likely due
to several factors: 1). Themajority of successful existing approaches formulate con-
volution as an integral over the group of transformations as opposed to the domain
itself [CW16, CGW19, LW21]; or 2). rely onfinite-dimensional group representations
to parameterize kernels [WGTB17,WW19]; and 3) expect the transformations to act
linearly on the domain [FSIW20]. None of these approaches are readily extended
to handle higher-dimensional, non-compact groups of transformations where the
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domain of integration is unbounded, the representations are infinite-dimensional,
and the action of the group is nonlinear.

1.3 Contributions and outline

This thesis presents a unified framework for transformation-equivariant convolu-
tions on arbitrary homogeneous spaces and 2D Riemannian manifolds, which we
call extended convolution. Our approach is based on the following observation: to
achieve equivariance to an arbitrary class of transformations, we only need to con-
sider how the positions of points as seen in the frames of their neighbors deform. By
defining an equivariant frame operator at each point with which we align the filter,
we correct for the change in the relative positions induced by the transformations

The resulting framework is highly flexible and descriptive - the construction
places no constraints on the kinds of filters that can be used. Furthermore, the
framework canhandle arbitrary transformation groups, includinghigher-dimensional
non-compact groups that act non-linearly on the domain, such as Möbius transfor-
mations of the sphere. Critically, extended convolution naturally generalizes to ar-
bitrary 2D Riemannian manifolds – such as the surfaces of 3D shapes – as it does
not need a canonical coordinate system to be applied.

This thesis is divided into two parts, focusing on theory and applications, respec-
tively. In Part I, we first review the relevant mathematical background (Chapter 2),
including transformation groups, diffeomorphisms, and their actions on homoge-
neous spaces. Chapter 3 develops a general theory of extended convolution on arbi-
trary homogeneous spaces, and makes the framework concrete by realizing equiv-
ariant extended convolutions on three canonical domains – the plane, the sphere,
and the disk. In Chapter 4, the framework is generalized to construct isometry-
equivariant convolutional operators on 2D Riemannian manifolds.
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In Part II, we demonstrate the power and flexibility of extended convolution in
several applications. In Chapter 5, we use extended convolution to develop a uni-
fied framework for image and surface feature descriptors called Extended Convolu-
tion Histogram of Orientations (ECHO). In Chapter 6, we use the generalization of
extended convolution to surface vector fields to construct state-of-the art surface
CNNs. Last, we move beyond rotations and isometries and use extended convolu-
tion to construct spherical CNNs equivariant toMöbius transformations (Chapter 7).
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Part I

Extended Convolution
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Chapter 2

Background

2.1 Transformation groups

Many interesting classes of transformations formgroups. A group is a set𝐺, equipped
with a product operation ◦ : 𝐺 × 𝐺 → 𝐺 satisfying the following properties:

1. Associativity: (𝑔1 ◦ 𝑔2) ◦ 𝑔3 = 𝑔1 ◦ (𝑔2 ◦ 𝑔3), ∀𝑔1, 𝑔2, 𝑔3 ∈ 𝐺

2. Unit Element: There exists an element 𝑒 ∈ 𝐺 such that 𝑒 ◦ 𝑔 = 𝑔 = 𝑔 ◦ 𝑒 for all
𝑔 ∈ 𝐺

3. Inverses Exist: For each 𝑔 ∈ 𝐺, there exists an element ℎ ∈ 𝐺 such that
ℎ ◦ 𝑔 = 𝑒 = 𝑔 ◦ ℎ, denoted as 𝑔−1 ≡ ℎ.

A transformation group is a group 𝐺 that acts on a set 𝑆 such that the mapping
𝑔 : 𝑆 → 𝑆

𝑥 ↦→ 𝑔𝑥

is a bijection with the properties
(𝑔1 ◦ 𝑔2)𝑥 = 𝑔1(𝑔2𝑥) and 𝑒𝑥 = 𝑥

for all 𝑥 ∈ 𝑆 and 𝑔, 𝑔1, 𝑔2 ∈ 𝐺. Here we consider transformation groups that are
matrix Lie groups whose elements belong either to ℝ𝑛×𝑛 or ℂ𝑛×𝑛 and have the spe-
cial property that the set 𝐺 is a smooth manifold. That is, a 𝑑−dimensional matrix
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Lie group can be parameterized on a subset 𝑈 of ℝ𝑑 or ℂ𝑑 such that 𝑔 = 𝑔 (q) =

[𝑔𝑖 𝑗 (q)], q ∈ 𝑈 and each matrix entry is an analytic function.

2.1.1 Homogeneous spaces

Given a (Lie) transformation group 𝐺 acting on a set 𝑆, the latter is called a homo-
geneous space if it is a smooth manifold and 𝐺 acts transitively – for any 𝑥, 𝑦 ∈ 𝑆

there exists 𝑔 ∈ 𝐺 such that 𝑔𝑥 = 𝑦.
Homogeneous spaces can be viewed as coset spaces. A subgroup 𝐻 of a group

𝐺 is a subset 𝐻 ⊆ 𝐺 that forms a group under the same product operation. Given
a subgroup 𝐻 ⊆ 𝐺 and an element 𝑔 ∈ 𝐺, the associated left coset is the set 𝑔𝐻 =

{𝑔 ◦ ℎ | ℎ ∈ 𝐻}. Cosets are disjoint, so for any 𝑔1, 𝑔2 ∈ 𝐺, 𝑔1𝐻 ∩ 𝑔2𝐻 ≠ ∅ if and
only if 𝑔1𝐻 = 𝑔2𝐻 . The set of all left cosets is the called the coset space, denoted
𝐺/𝐻 = {𝑔𝐻 | 𝑔 ∈ 𝐺}, and the natural map

𝜋 : 𝐺 → 𝐺/𝐻

𝑔 ↦→ 𝑔𝐻
(2.1)

sending 𝑔 ∈ 𝐺 to 𝑔𝐻 ∈ 𝐺/𝐻 is called the quotient map. The quotient map inter-
twines the actions of 𝐺 on itself and on 𝐺/𝐻 , from which it follows that 𝐺 acts nat-
urally on 𝐺/𝐻 through left multiplication,

𝑔1(𝜋(𝑔2)) ≡ 𝜋(𝑔1 ◦ 𝑔2) ⇐⇒ 𝑔1(𝑔2𝐻) ≡ (𝑔1 ◦ 𝑔2)𝐻

for all 𝑔1, 𝑔2 ∈ 𝐺. The choice of 𝐻 induces a natural “origin”, denoted 0 ∈ 𝐺/𝐻 with
0 = 𝑒𝐻 , which is preserved under the action of 𝐻 . That is, 𝑔 (0) = 0 if an only if
𝑔 ∈ 𝐻 .

Similarly, given a point 𝑥 ∈ 𝑆, the set of all elements in 𝐺 mapping 𝑥 to itself
forms a subgroup called the stabilizer of 𝑥, denoted 𝐻𝑥 = {𝑔 ∈ 𝐺 | 𝑔𝑥 = 𝑥}. The
connection between the homogeneous space 𝑆 and the coset space 𝐺/𝐻𝑥 can be
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made concrete via the map
𝜅 : 𝐺/𝐻𝑥 → 𝑆

𝑔𝐻𝑥 ↦→ 𝑔𝑥
(2.2)

which is well-defined, bijective, and intertwines the actions of 𝐺 on 𝐺/𝐻𝑥 and 𝑆

[Lee12]. It follows that 𝑆 and 𝐺/𝐻𝑥 are isomorphic, and we write 𝑆 ≅ 𝐺/𝐻𝑥 , denot-
ing the natural mapping from 𝐺 to 𝑆 by

˜︁𝜋 ≡ 𝜅 ◦ 𝜋. (2.3)
Note that 𝜅(0) = 𝑥, so in some sense viewing the homogeneous space 𝑆 as the coset
space 𝐺/𝐻𝑥 provides something similar to a “global parameterization" of 𝑆 about 𝑥.
While any 𝑥 ∈ 𝑆 can be stabilized, both the geometry of 𝑆 and the specific action of
𝐺 often motivate a choice of 𝑥 which simplifies the form of 𝐻𝑥 .

2.1.2 Canonical domains

In this thesis we will pay special attention to three canonical domains that are of
practical interest in graphics and vision – the plane, the Riemann sphere, and the
disk. In what follows, we will show how each of these can be realized as homoge-
neous spaces under the action of transformation groups.
ℂ as a homogeneous space

Herewe identify the planeℝ2 with the complex lineℂvia the isomorphism (𝑥, 𝑦) ↦→

𝑥 + 𝑖 𝑦. The two-dimensional special Euclidean group SE(2) comprises all rotations
and translations of the plane. A planar rotation by an angle 𝜃 can be expressed as
multiplication by the complex number 𝑒𝑖𝜃. The set of all unit complex numbers un-
der multiplication forms the group U(1) which is isomorphic to SO(2). Similarly,
a translation by a vector t = [𝑡1, 𝑡2]⊤ ∈ ℝ2 is equivalent to a shift by the complex
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number 𝑡 = 𝑡1 + 𝑖𝑡2 ∈ ℂ. In this context, elements of SE(2) can be expressed as
𝑔 (𝜃, 𝑡) ≡

[︃
𝑒𝑖𝜃 𝑡
0 1

]︃
∈ ℂ2×2

where 𝑒𝑖𝜃 ∈ U(1) is a rotation by an angle 𝜃 and 𝑡 ∈ ℂ is a translation. SE(2) acts
transitively on ℂ with

𝑔 (𝜃, 𝑡) 𝑧 ≡ 𝑒𝑖𝜃 𝑧 + 𝑡.

It is easy to see that stabilizer subgroup of the origin 0 ∈ ℂ is the subset of SE(2)

consisting of all elements such that 𝑡 = 0 and is isomorphic to U(1). It follows that
the map

𝜅 : SE(2)/U(1) → ℂ

𝑔 (𝜃, 𝑡) U(1) ↦→ 𝑡
(2.4)

is an isomorphism so ℂ ≅ SE(2)/U(1).
ˆ︁ℂ as a homogeneous space

The two-sphere 𝑆2 can be associated with the Riemann sphere ˆ︁ℂ = ℂ ∪ {∞} via the
stereographic projection taking the north pole to 0 ∈ ˆ︁ℂ. The two-dimensional com-
plex special linear group SL(2,ℂ) consists of all matrices inℂ2×2 with unit determi-
nant. Elements of SL(2,ℂ) are called Möbius transformations and act transitively
on ˆ︁ℂ by fractional linear transformations. That is, for any 𝑔 =

[︁
𝑎 𝑏
𝑐 𝑑

]︁
∈ SL(2,ℂ) and

𝑧 ∈ ˆ︁ℂ,
𝑔𝑧 ≡ 𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
. (2.5)

Observing that
𝑔 0 =

𝑏

𝑑
= 0 ⇐⇒ 𝑏 = 0,
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it is clear that the subgroupL ⊂ SL(2,ℂ) consisting of the lower-triangular elements
of SL(2,ℂ) stabilizes 0 ∈ ˆ︁ℂ and the map

𝜅 : SL(2,ℂ)/L → ˆ︁ℂ
𝑔 L ↦→ 𝑏

𝑑

(2.6)

is an isomorphism between SL(2,ℂ)/L and ˆ︁ℂ up to multiplication by −1.ˆ︁ℂ can also be realized as ahomogeneous spaceunder the action of two-dimensional
special unitary group SU(2) ⊂ SL(2,ℂ) via fractional linear transformations. Ele-
ments 𝑔 ∈ SU(2) are of the form

𝑔 =

[︃
𝛼 𝛽

−�̄� �̄�

]︃
, |𝛼|2 + |𝛽 |2 = 1, (2.7)

and canbeparameterized in terms of 𝑧− 𝑦−𝑧 Euler angle triplets (𝜃, 𝜙, 𝜓) ∈ [0, 2𝜋)×

[0, 𝜋] × [−2𝜋, 2𝜋) corresponding to a factorization as a product of one-parameter
subgroups

𝑔 (𝜃, 𝜙, 𝜓) ≡
[︄
𝑒−

𝑖𝜃
2 0

0 𝑒
𝑖𝜃
2

]︄ [︄
cos 𝜙

2 sin 𝜙
2

− sin 𝜙
2 cos 𝜙

2

]︄ [︄
𝑒−

𝑖𝜓
2 0

0 𝑒
𝑖𝜓
2

]︄
.

Noting that
𝑔 (𝜃, 𝜙, 𝜓) 0 = tan

𝜙

2
𝑒−𝑖𝜃 = 0 ⇐⇒ 𝜙 = 0,

it follows that the subgroup stabilizing the origin consists of the elements of the
form [︄

𝑒−
𝑖𝜃
2 0

0 𝑒
𝑖𝜃
2

]︄
, (2.8)

which is isomorphic to U(1), the group of unit complex numbers under multiplica-
tion. We note that the isomorphism between SU(2)/U(1) and ˆ︁ℂ

𝜅 : SU(2)/U(1) → ˆ︁ℂ
𝑔 U(1) ↦→ 𝛽

�̄�
= tan

𝜙

2
𝑒−𝑖𝜃

(2.9)

induces a natural parameterization of ˆ︁ℂ in spherical coordinates (𝜃, 𝜙) ∈ [0, 2𝜋) ×

[0, 𝜋].
13



𝔻 as a homogeneous space

The open complex unit disk
𝔻 = {𝑧 ∈ ℂ | |𝑧 | < 1},

is a homogeneous space under the action of the subgroup SU(1, 1) ⊂ SL(2,ℂ),
which consists of the elements of SL(2,ℂ) of the form[︃

𝛼 𝛽

�̄� �̄�

]︃
, |𝛼|2 − |𝛽 |2 = 1. (2.10)

Similar to SU(2), SU(1, 1) can be parameterized in terms of the triplets (𝜃, 𝜏, 𝜓) ∈

[0, 2𝜋) ×ℝ≥0 × [−2𝜋, 2𝜋) corresponding to the factorization
𝑔 (𝜃, 𝜏, 𝜓) ≡

[︄
𝑒−

𝑖𝜃
2 0

0 𝑒
𝑖𝜃
2

]︄ [︃
cosh 𝜏 sinh 𝜏
sinh 𝜏 cosh 𝜏

]︃ [︄
𝑒−

𝑖𝜓
2 0

0 𝑒
𝑖𝜓
2

]︄
.

By a similar argument as above it can be shown that the origin preserving subgroup
again consists of the diagonal elements in Equation (2.8)which is isomorphic toU(1)

and that the isomorphism
𝜅 : SU(1, 1)/U(1) → 𝔻

𝑔 U(1) ↦→ 𝛽

�̄�
= tanh 𝜏 𝑒−𝑖𝜃

(2.11)

induces a parameterization of 𝔻 in the coordinates (𝜃, 𝜏) ∈ [0, 2𝜋) ×ℝ≥0.

2.2 Riemannian manifolds

In this thesis we are primarily interested in defining convolutions of functions on
smooth 2D Riemannian manifolds such as the plane, the sphere, and the surfaces
of 3D shapes. Generally speaking, a smooth 2D manifold 𝑀 is a space that is locally
Euclidean, i.e. the local neighborhood about any point “looks” like a copy of the
plane.
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2.2.1 Tangent spaces and Riemannian metrics

This idea is formalized in the concept of the tangent space. At any point 𝑝 on a
2D manifold 𝑀 , we can attach at 2D vector space 𝑇𝑝𝑀 called the tangent space. As
its name suggests, 𝑇𝑝𝑀 is the space of all tangent vectors at 𝑝 – the velocities at
𝑝 of all curves on 𝑀 passing through 𝑝. A 2D Riemannian manifold a smooth 2D
manifold𝑀 equippedwith a Riemannianmetric 𝑠, which is a smoothmap assigning
a symmetric 2D tensor 𝑠𝑝 at each point 𝑝 ∈ 𝑀 . Assigning to each point 𝑝 ∈ 𝑀 a basis
{e1, e2}𝑝 in the tangent space 𝑇𝑝𝑀 , the metric tensor 𝑠𝑝 defines an inner product
in tangent space

⟨v1, v2⟩𝑝 = v𝑇1 𝑠𝑝v2, ∀v1, v2 ∈ 𝑇𝑝𝑀,

which can be used to define the lengths of and angles between tangent vectors,
|v|2𝑝 = ⟨v, v⟩𝑝 and cos 𝜃 =

⟨v1, v2⟩𝑝
|v1 |𝑝 |v2 |𝑝

. (2.12)
Moving forward, we will refer to smooth 2D Riemannian manifolds (𝑀, 𝑠) inter-
changeably as surfaces.
Tangent vectors as complex numbers

Following the approach of Knoppel et al. [KCPS13], we represent tangent vectors as
complex numbers. For each point 𝑝 ∈ 𝑀 , 𝑇𝑝𝑀 can be associated with ℂ such that
for any v ∈ 𝑇𝑝𝑀, we have v ≡ 𝑟 𝑒𝑖𝜃, with 𝑟 = |v|𝑝 and 𝜃 the angle between v and e1.
Logarithm and exponential maps

The notions of distances and angles admitted by a Riemannian metric in Equa-
tion (2.12) enable a natural parameterization of the local surface about a point.
Specifically, given a point 𝑝 ∈ 𝑀 and a neighboring point 𝑞 ∈ 𝑀 , the shortest length
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geodesic curve along the surface from 𝑝 to 𝑞 gives the information needed to de-
scribe the “position” of 𝑞 in the tangent space at 𝑝. That is, the length of the curve
gives a radial (geodesic) distance 𝑟𝑝𝑞 and the initial direction at 𝑝 an angle 𝜃𝑝𝑞. To-
gether, these give a point 𝑇𝑝𝑀 corresponding to the relative position of 𝑞 as seen
from 𝑝, called the logarithm of 𝑞 with respect to 𝑝

log𝑝 𝑞 ≡ 𝑟𝑝𝑞 𝑒
𝑖𝜃𝑝𝑞 . (2.13)

Similarly, the exponential is the inverse of the logarithm map, taking the vector
log𝑝 𝑞 ∈ 𝑇𝑝𝑀 to the point 𝑞 ∈ 𝑀 . Typically, the logarithm map is only well-defined
locally as for points farther away on a surface, the shortest length geodesic may not
be unique.
Parallel transport

At certain points we will wish to view a vector v in the tangent space at a point
𝑝 ∈ 𝑀 in the frame in the tangent space at a neighboring point 𝑞. To do so, we
transport v along the shortest geodesic from 𝑝 to 𝑞 such that the angle between v

and the tangent vector remains fixed as it travels along the curve. Intuitively, the
vector is continuously rotated as it travels tomaintain a fixed orientation relative to
the tangent vector and the cumulative rotation undergone by the vector in moving
along the geodesic from 𝑝 to 𝑞 corresponds to a linear map from 𝑇𝑝𝑀 to 𝑇𝑞𝑀 called
parallel transport. Formally, we denote by 𝜑𝑞𝑝 the change in angle resulting from
the parallel transport P𝑞�𝑝 : 𝑇𝑝𝑀 → 𝑇𝑞𝑀 along the shortest geodesic from 𝑝 to 𝑞,
such that for any v ∈ 𝑇𝑝𝑀 ,

P𝑞�𝑝(v) ≡ 𝑒𝑖𝜑𝑞𝑝 v. (2.14)
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2.2.2 Functions on surfaces

Given a surface 𝑀 , we are broadly interested in scalar and tensor functions on
𝑀 taking values in some domain 𝐷. The operation perhaps most fundamental to
computing convolutions is integration. For a surface 𝑀 with Riemannian metric 𝑠,
the area measure 𝑑𝑝 at a point 𝑝 ∈ 𝑀 is expressed in local coordinates 𝑝 ↦→ (𝑧1, 𝑧2)

as
𝑑𝑝 ≡

√︃
det 𝑠𝑝 𝑑𝑧1 𝑑𝑧2. (2.15)

and the integral of a function 𝜓 : 𝑀 → 𝐷 over the surface 𝑀 is the quantity∫
𝑀
𝜓 𝑑𝑝.

In practice, we consider functions taking values in 𝐷 = ℝ,ℂ,ℝ𝑚×𝑛, orℂ𝑚×𝑛 belong-
ing to the spaces of square-integrable functions on 𝑀

𝐿2(𝑀, 𝐷) ≡
{︃
𝜓 : 𝑀 → 𝐷

|︁|︁|︁|︁ ∫
𝑀
|𝜓|2 𝑑𝑝 < ∞

}︃
, (2.16)

where | · | denotes either the modulus or Frobenius norm, depending on whether
𝜓 is scalar- or tensor-valued. We note that 𝐿2(𝑀,ℂ) forms an inner-product space
with the inner-product of two functions defined by integrating the product of the
first with the conjugate of the second

⟨𝜓1, 𝜓2⟩ =
∫
𝑀
𝜓1 𝜓2 𝑑𝑝, ∀𝜓1, 𝜓2 ∈ 𝐿2(𝑀,ℂ). (2.17)

A special class of functions on surfaces are vector fields, maps 𝑋 : 𝑀 → 𝑇𝑀

assigning to each point 𝑝 ∈ 𝑀 a tangent vector 𝑋 (𝑝) ∈ 𝑇𝑝𝑀 . We denote the space
of vector fields on 𝑀 as Γ(𝑇𝑀).

2.2.3 Diffeomorphisms

A diffeomorphism 𝜸 : 𝑀 → 𝑀′ is a smooth, bijectivemapbetween a surface𝑀 and a
surface𝑀′. At eachpoint 𝑝 ∈ 𝑀 , the action of the diffeomorphism 𝜸 induces a linear
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mapbetween the tangent spaces at corresponding points given by the differential of
𝜸, 𝑑𝜸 |𝑝 : 𝑇𝑝𝑀 → 𝑇𝜸(𝑝)𝑀

′. The action of an orientation-preserving diffeomorphism
distorts the area measure such that

𝑑𝜸(𝑝) = 𝜆2
𝜸 (𝑝) 𝑑𝑝, (2.18)

where 𝜆2
𝜸 : 𝑀 → ℝ>0 is a smooth map called the scale factor.

In fact, the set of all diffeomorphisms mapping a surface 𝑀 to itself forms a
group under composition, Diff(𝑀), acting transitively on𝑀 . While we do not inter-
pret general 2D surfaces as homogeneous spaces, we will see how the action of the
transformation groups on the homogeneous spaces discussed in §2.1 can be viewed
as diffeomorphisms on smooth manifolds. Here we will focus on two subgroups of
diffeomorphisms that play an important role in vision and graphics: isometric and
conformal diffeomorphisms.
Isometric diffeomorphisms

Isometric diffemorphims (which we refer to generally as isometries) preserve both
orientation and distances. Formally, a diffeomorphism 𝜸 : 𝑀 → 𝑀′ is an isometry

if for all 𝑝 ∈ 𝑀 and v1, v2 ∈ 𝑇𝑝𝑀 ,
⟨v1, v2⟩𝑝 =

⟨︁[︁
𝑑𝜸 |𝑝

]︁
v1,

[︁
𝑑𝜸 |𝑝

]︁
v2

⟩︁
𝜸(𝑝) . (2.19)

Or, in other words, isometries are diffeomorphisms that preserve the inner prod-
uct. Since an isometry 𝜸 preserves distances, it therefore must also preserve areas,
so 𝜆2

𝜸 (𝑝) = 1 for all 𝑝 ∈ 𝑀 and the area measure in Equation (2.15) is invariant. We
note that the distance-preservation property of isometries induces a natural notion
of locality. Namely, a diffeomorphism 𝜸 is a local isometry if there exist neighbor-
hoods N ⊆ 𝑀 and N ′ = 𝜸(N) ⊆ 𝑀′ such that the restriction 𝜸 : N → N ′ is an
isometry.
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It follows from Equation (2.19) that if 𝜸 : 𝑀 → 𝑀′ is an isometry, then at each
point 𝑝 ∈ 𝑀 , the differential 𝑑𝜸 |𝑝 is a special orthogonal transformation. If the
bases in the tangent spaces are orthonormal, then the action of the differential
𝑑𝜸 |𝑝 : 𝑇𝑝𝑀 → 𝑇𝜸(𝑝)𝑀

′ can be expressed as a rotation by an angle 𝛾𝑝, with[︁
𝑑𝜸 |𝑝

]︁
v ≡ 𝑒𝑖𝛾𝑝 v. (2.20)

Similarly, the logarithm and transport operators in Equations (2.13-2.14) transform
under isometries as [GQ20]

log𝜸(𝑝) 𝜸(𝑞) = 𝑒𝑖𝛾𝑝 log𝑝 𝑞 and P𝜸(𝑞)�𝜸(𝑝) = 𝑒𝑖 (𝛾𝑞−𝛾𝑝)P𝑞�𝑝. (2.21)
Conformal diffeomorphisms

Conformal diffeomorphismspreserve orientations andangles, encompassing abroader
class of transformations than isometries that still preserve a sense of “shape”. For-
mally, a diffeomorphism 𝜸 : 𝑀 → 𝑀′ is conformal if for all 𝑝 ∈ 𝑀 and v1, v2 ∈ 𝑇𝑝𝑀

𝜆2
𝜸 (𝑝) ⟨v1, v2⟩𝑝 =

⟨︁[︁
𝑑𝜸 |𝑝

]︁
v1,

[︁
𝑑𝜸 |𝑝

]︁
v2

⟩︁
𝜸(𝑝) , (2.22)

where 𝜆2
𝜸 (𝑝) is the scale factor as in Equation (2.18). It is easy to see that isometries

are a special case of conformal transformations where 𝜆2
𝜸 = 1.

2.2.4 Homogeneous spaces as Riemannian manifolds

Herewe reconsider the three canonical domains in §2.1.2 as Riemannianmanifolds.
The actions of the associated transformation groups can be viewed as diffeomor-
phisms, which we will classify as either isometric or conformal.
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ℂ as a Riemannian manifold

The plane – equivalentlyℂ – is a Riemannian manifold under the Euclidean metric,
expressed at 𝑧 = 𝑧1 + 𝑖𝑧2 ∈ ℂ as

𝑠𝑧 = 𝑑𝑧2
1 + 𝑑𝑧2

2.

Here, 𝑠𝑧 corresponds to the standard dot product in Euclidean space, and in associ-
ating 𝑇𝑧ℂ with ℂ we can write

⟨v1, v2⟩𝑧 =
1
2
(v̄1v2 + v1v̄2),

for all v1, v2 ∈ 𝑇𝑧ℂ. The area measure is the familiar
𝑑𝑧 = 𝑑𝑧1𝑑𝑧2. (2.23)

Given a function 𝜓 ∈ 𝐿2(𝑀,ℂ) we can express the differential of 𝜓 at 𝑥 ∈ ℂ in local
coordinates 𝑧 = 𝑧1 + 𝑖𝑧2 as the complex number

𝑑 𝜓|𝑥 ≡
1
2

(︃
𝜕𝜓

𝜕𝑧1

|︁|︁|︁
𝑥
− 𝑖

𝜕𝜓

𝜕𝑧2

|︁|︁|︁
𝑥

)︃
. (2.24)

Recall that elements 𝑔 (𝜃, 𝑡) ∈ SE(2) act transitively on ℂ via
𝑔 (𝜃, 𝑡) 𝑧 = 𝑒𝑖𝜃 𝑧 + 𝑡

and the differential of 𝑔 (𝜃, 𝑡) ∈ SE(2) is given by
𝑑 𝑔 (𝜃, 𝑡) |𝑧 = 𝑒𝑖𝜃 (2.25)

Then, for any 𝑧 ∈ ℂ, v1, v2 ∈ 𝑇𝑧ℂ, and 𝑔 = 𝑔 (𝜃, 𝑡) ∈ SE(2) we have⟨︁[︁
𝑑 𝑔 |𝑧

]︁
v1,

[︁
𝑑 𝑔 |𝑧

]︁
v2

⟩︁
𝑔 𝑧

= ⟨𝑒𝑖𝜃 v1, 𝑒
𝑖𝜃 v2⟩𝑔 𝑧

=
1
2
(𝑒−𝑖𝜃 v̄1 𝑒

𝑖𝜃 v2 + 𝑒𝑖𝜃 v1 𝑒
−𝑖𝜃 v̄2)

=
1
2
(v̄1v2 + v1v̄2)

= ⟨v1, v2⟩𝑧,

so it’s clear that transformations in SE(2) are isometric diffeomorphisms of the
plane.
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ˆ︁ℂ as a Riemannian manifold

We view ˆ︁ℂ as a Riemannian manifold under the round metric, expressed at 𝑧 =

𝑧1 + 𝑖 𝑧2 ∈ ˆ︁ℂ as
𝑠𝑧 =

4(︁
1 + |𝑧 |2

)︁2 (𝑑𝑧2
1 + 𝑑𝑧2

2), (2.26)

and in associating 𝑇𝑧ˆ︁ℂ with ℂ we can write
⟨v1, v2⟩𝑧 =

2(︁
1 + |𝑧 |2

)︁2 (v̄1v2 + v1v̄2),

for all v1, v2 ∈ 𝑇𝑧ˆ︁ℂ. Here, the area measure takes the form
𝑑𝑧 =

4 𝑑𝑧1 𝑑𝑧2(︁
1 + |𝑧 |2

)︁2 , (2.27)

and the differential of a function 𝜓 ∈ 𝐿2(ˆ︁ℂ,ℂ) is defined in the same manner as
in Equation (2.24). Recall that SL(2,ℂ) acts transitively on ˆ︁ℂ via fractional linear
transformations as in Equation (2.5). Then, the differential of the transformation
𝑔 =

[︁
𝑎 𝑏
𝑐 𝑑

]︁
∈ SL(2,ℂ) at 𝑧 ∈ ˆ︁ℂ is given by

𝑑 𝑔 |𝑧 =
1

(𝑐𝑧 + 𝑑)2 , (2.28)
and for any 𝑧 ∈ ˆ︁ℂ and v1, v2 ∈ 𝑇𝑧ˆ︁ℂ we have⟨︁[︁

𝑑 𝑔 |𝑧
]︁
v1,

[︁
𝑑 𝑔 |𝑧

]︁
v2

⟩︁
𝑔 𝑧

=

⟨︃
1

(𝑐𝑧 + 𝑑)2 v1,
1

(𝑐𝑧 + 𝑑)2 v2

⟩︃
𝑔 𝑧

=
2(︁

1 + |𝑔 𝑧 |2
)︁2

1
|𝑐𝑧 + 𝑑 |4 (v̄1v2 + v1v̄2)

=

[︄ (︁
1 + |𝑧 |2

)︁2(︁
1 + |𝑔 𝑧 |2

)︁2 |𝑐𝑧 + 𝑑 |4

]︄
2(︁

1 + |𝑧 |2
)︁2 (v̄1v2 + v1v̄2)

=

[︄ (︁
1 + |𝑧 |2

)︁2(︁
1 + |𝑔 𝑧 |2

)︁2 |𝑐𝑧 + 𝑑 |4

]︄
⟨v1, v2⟩𝑧
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so elements of SL(2,ℂ) are conformal diffeomorphisms on ˆ︁ℂ with scale factor
𝜆2
𝑔 (𝑧) =

(1 + |𝑧 |2)2

(1 + |𝑔𝑧 |2)2 |𝑐𝑧 + 𝑑 |4 =
(1 + |𝑧 |2)2(︁

|𝑎𝑧 + 𝑏|2 + |𝑐𝑧 + 𝑑 |2
)︁2 . (2.29)

If 𝑔 =
[︁

𝑎 𝑏
−�̄� �̄�

]︁
∈ SU(2) ⊂ SL(2,ℂ), then(︂

|𝑎𝑧 + 𝑏|2 +
|︁|︁�̄�𝑧 − �̄�

|︁|︁2)︂2
= (𝑎𝑧 + 𝑏)

(︁
�̄��̄� + �̄�

)︁
+

(︁
�̄�𝑧 − �̄�

)︁ (︁
𝑏�̄� − 𝑎

)︁
= ( |𝑎|2 + |𝑏|2) (1 + |𝑧 |2)2

(2.7)
= (1 + |𝑧 |2)2,

which gives 𝜆2
𝑔 (𝑧) = 1, so SU(2) is the group of isometries of ˆ︁ℂ.

Note that we can define the Hesssian of a function 𝜓 ∈ 𝐿2(ˆ︁ℂ,ℂ) as a complex
number whose coefficients are related to the covariant Hessian computed with re-
spect to the round metric in Equation (2.26). The terms depend on the first and
second partial derivatives of 𝜓 in addition to the Christoffel symbols correspond-
ing to the metric. At the origin, the terms depending on the first derivatives and
Christoffel symbols vanish, and the Hessian becomes

∇𝑑 𝜓
|︁|︁
0 =

1
4

(︄
𝜕2𝜓

𝑑𝑧2
1
− 𝜕2𝜓

𝜕𝑧2
2
− 2𝑖

𝜕2𝜓

𝜕𝑧1𝜕𝑧2

)︄|︁|︁|︁|︁|︁
0

, (2.30)

with the Hessian of 𝑔 =
[︁
𝑎 𝑏
𝑐 𝑑

]︁
∈ SL(2,ℂ) at the origin given by

∇𝑑 𝑔
|︁|︁
0 = −2𝑐

𝑑3 . (2.31)

𝔻 as a Riemannian manifold

The open unit disk 𝔻 = {𝑧 ∈ ℂ | |𝑧 | < 1} is a Riemannian manifold under the
hyperbolic metric, expressed at 𝑧 = 𝑧1 + 𝑖𝑧2 ∈ 𝔻 as

𝑠𝑧 =
4(︁

1 − |𝑧 |2
)︁2 (𝑑𝑧2

1 + 𝑑𝑧2
2), (2.32)
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and in associating 𝑇𝑧𝔻 with ℂ we can write
⟨v1, v2⟩𝑧 =

2(︁
1 − |𝑧 |2

)︁2 (v̄1v2 + v1v̄2),

for all v1, v2 ∈ 𝑇𝑧𝔻. Here, the area measure is
𝑑𝑧 =

4 𝑑𝑧1 𝑑𝑧2(︁
1 − |𝑧 |2

)︁2 , (2.33)

with differential of a function 𝜓 ∈ 𝐿2(𝔻,ℂ) defined in the same way as above.
SU(1, 1) ⊂ SL(2,ℂ) acts transitively on 𝔻 via fractional linear transformations,

and the differential of the transformation 𝑔 =
[︁
𝑎 𝑏
�̄� �̄�

]︁
∈ SU(1, 1) is

𝑑 𝑔 |𝑧 =
1(︁

�̄�𝑧 + �̄�
)︁2 .

Here, for any 𝑧 ∈ 𝔻 and v1, v2 ∈ 𝑇𝑧𝔻 we have⟨︁[︁
𝑑 𝑔 |𝑧

]︁
v1,

[︁
𝑑 𝑔 |𝑧

]︁
v2

⟩︁
𝑔 𝑧

=

⟨︄
1(︁

�̄�𝑧 + �̄�
)︁2 v1,

1(︁
�̄�𝑧 + �̄�

)︁2 v2

⟩︄
𝑔 𝑧

=
2(︁

1 − |𝑔 𝑧 |2
)︁2

1|︁|︁�̄�𝑧 + �̄�
|︁|︁4 (v̄1v2 + v1v̄2)

=
2(︂ |︁|︁�̄�𝑧 + �̄�

|︁|︁2 − |︁|︁𝑎𝑧 + 𝑏
|︁|︁2)︂2 (v̄1v2 + v1v̄2)

=
2

( |𝑎|2 − |𝑏|2)2 (1 − |𝑧 |2)2 (v̄1v2 + v1v̄2)

(2.10)
=

2
(1 − |𝑧 |2)2 (v̄1v2 + v1v̄2)

= ⟨v1, v2⟩𝑧,

so SU(1, 1) is the group of isometries of 𝔻.
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2.3 Representations by shift operators

A representation of a group𝐺 on a vector space𝑉 is a map from𝐺 to group of linear
transformations over𝑉

𝑇 : 𝐺 → GL(𝑉 )

𝑔 ↦→ 𝑇 (𝑔)

satisfying the property
𝑇 (𝑔1)𝑇 (𝑔2) = 𝑇 (𝑔1 ◦ 𝑔2).

Herewe are interested in representations of Lie group on spaces of functions. Given
a Lie group 𝐺, Lie subgroup 𝐻 ⊂ 𝐺, and homogeneous space 𝑀 = 𝐺/𝐻 , 𝐺 acts
naturally on 𝐿2(𝑀,ℂ) by left shifts

𝑔 𝑓 = 𝑓 ◦ 𝑔−1, 𝑔 ∈ 𝐺, 𝑓 ∈ 𝐿2(𝑀,ℂ), (2.34)
where ◦denotes the composition ofmaps. Fixing 𝑔 , wenote that themapon 𝐿2(𝑀,ℂ)

given by left-shifts is linear with
𝑔 (𝛼 · 𝑓1 + 𝛽 · 𝑓2) = 𝛼 ·

[︁
𝑔 𝑓1

]︁
+ 𝛽 ·

[︁
𝑔 𝑓2

]︁
, (2.35)

for all 𝑓1, 𝑓2 ∈ 𝐿2(𝑀,ℂ) and 𝛼, 𝛽 ∈ ℂ. Furthermore for any 𝑔1, 𝑔2 ∈ 𝐺 and 𝑓 ∈

𝐿2(𝑀,ℂ) we have
𝑔1

[︁
𝑔2 𝑓

]︁
= 𝑔1 ( 𝑓 ◦ 𝑔−1

2 ) = 𝑓 ◦ 𝑔−1
2 ◦ 𝑔−1

1 = (𝑔1 ◦ 𝑔2) 𝑓 ,

from which it follows that the action the action of 𝐺 by left shifts forms a represen-
tation of 𝐺 on 𝐿2(𝑀,ℂ).
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Chapter 3

Extended Convolution on
Homogeneous Spaces

In this chapterwepresent a general framework for transformation group-equivariant
convolutions on arbitrary homogeneous spaces. Despite the pervasiveness of con-
volution and its twin correlation in vision and image processing, they have an in-
herent limitation: when convolving or correlating a signal with a filter, the filter
remains fixed throughout operation, and cannot adapt to spatial information. We
show how to remove this limitation by extending convolution with a frame opera-
tor, allowing the filter to adaptively transform as it travels over a domain.

We can make extended convolution equivariant to an arbitrary transformation
group by observing that we only need to consider the lower-dimensional subgroup
which transforms the positions of points as seen in the frames of their neighbors.
By defining the frame operator in a manner that is equivariant under the action of
the subgroup, we can align the filter to correct for the change in the relative posi-
tions. To compute convolutions, input features aremapped to a density distribution
controlling for the change in area measure induced by the transformation, and in-
tegrated against the aligned filters over the homogeneous space, rather than the
group itself.
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3.1 Describing relative positions

Tomotivate our approach,we’ll begin by recalling the familiar definition of convolu-
tion in the plane. The convolution of a signal𝜓 ∈ 𝐿2(ℂ,ℂ) with a filter𝜓 ∈ 𝐿2(ℂ,ℂ)

is the function in 𝐿2(ℂ,ℂ) with
(𝜓 ∗ 𝑓 ) (𝑧) =

∫
ℂ

𝜓( 𝑦) 𝑓 (𝑧 − 𝑦) 𝑑 𝑦. (3.1)
We can see that the operation is inherently localized – filters distribute theirweights
with respect to parameterizations of the plane about different points. At each point
𝑧 in the convolution of𝜓with 𝑓 in Equation (3.1), the value of𝜓 at each neighboring
point 𝑦 is weighted by the value of the filter at the relative position of 𝑧 as seen in
the frame at 𝑦, which is given by 𝑧 − 𝑦. To extend the concept of filter localization
to arbitrary homogeneous spaces, we need a generalized description of the relative
positions between points.

3.1.1 Generalized logarithm and exponential

Suppose we are given a Lie group 𝐺 and an associated homogeneous space 𝑀 such
that 𝑀 ≅ 𝐺/𝐻0, where 𝐻0 ⊂ 𝐺 is the stabilizer subgroup of some arbitrary choice
of origin 0 ∈ 𝑀 . Our goal is to define a parameterization of 𝑀 about a given point
𝑝 ∈ 𝑀 . Recalling that 𝑀 can be viewed as a Riemannian manifold under a given
metric 𝑠, the Riemannian logarithmmap (§2.2) initially appears to be a good candi-
date as it provides a natural notion of local parameterizations. However, it has sev-
eral important drawbacks. It is only locally invertible and is inflexible in the sense
that it can only be defined relative to the shortest, rather than arbitrary, geodesics.
Generally speaking, these limitations are workable, and we will later use the log-
arithm map to define extended convolution and correlation on arbitrary 2D Rie-
mannian manifolds. That said, while any homogeneous space can be viewed as a
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Riemannian manifold, the converse is false. Here, we can leverage the added struc-
ture induced by viewing𝑀 as a homogeneous space to define amore flexible notion
of the logarithm map which we call the generalized logarithm.

Formally, we define the generalized logarithm to be a lifting map
Log : 𝑀 → 𝐺

𝑝 ↦→ Log𝑝

satisfying ˜︁𝜋 (︂
Log−1

𝑝

)︂
= 𝑝, ∀𝑝 ∈ 𝑀, (3.2)

where Log−1
𝑝 ∈ 𝐺 denotes the inverse element of Log𝑝 ∈ 𝐺 and ˜︁𝜋 : 𝐺 → 𝑀 is the

natural map from 𝐺 to 𝑀 as defined in Equation (2.3). It follows that for all 𝑝 ∈ 𝑀

Log−1
𝑝 0 = Log−1

𝑝 ˜︁𝜋(𝑒) = ˜︁𝜋 (︂
Log−1

𝑝 𝑒
)︂
= ˜︁𝜋 (︂

Log−1
𝑝

)︂ (3.2)
= 𝑝,

so
Log𝑝 𝑝 = 0, ∀𝑝 ∈ 𝑀.

Then, for any point 𝑞 ∈ 𝑀 , we can express the “position” of 𝑞 in the frame of 𝑝 as
Log𝑝 𝑞 ∈ 𝑀 . By analogy to Riemannian geometry, the generalized logarithm maps
𝑀 to the “tangent space” at 𝑝. We make this explicit by denoting the image of the
logarithm map at 𝑝 as 𝑀𝑝:

Log𝑝 : 𝑀 → 𝑀𝑝,

though formally𝑀 and𝑀𝑝 are the same space. Similarly, we define the generalized
exponential at 𝑝 as the inverse of the generalized logarithm,

Exp𝑝 ≡ Log−1
𝑝 : 𝑀𝑝 → 𝑀,

mapping the “tangent space” at 𝑝 ∈ 𝑀 to the “base space” 𝑀 . We note that the
transitive action of 𝐺 on𝑀 ensures that at any point 𝑝 ∈ 𝑀 , there exists 𝑔 ∈ 𝐺 such
that ˜︁𝜋(𝑔−1) = 𝑝, so it is always possible to define Log : 𝑀 → 𝐺.

We use the notation Log and Exp to distinguish the generalized logarithm and
exponential from the Riemannian logarithmand exponentialmaps log and exp. Un-
like the latter, Log𝑝 and Exp𝑝 are global bijections on𝑀 under the assumption that
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𝐺 is a transformation group. Furthermore, the generalized logarithm and exponen-
tial are not necessarily uniquely defined nor continuous, though we will see that
this is not a requirement for extended convolution to be well-defined.

3.1.2 Action of the origin-stabilizing subgroup

Following the above discussion, we will think of convolutional filters as functions
defined on a canonical “tangent space” describing the weight with which a point
contributes to its neighbor in terms of the position of the neighbor in the frame of
that point. Our goal is to define a convolution operator on 𝑀 equivariant to trans-
formations in 𝐺. To this end we need to understand how the position of a point in
the frame of its neighbor changes under the action of a transformation 𝑔 ∈ 𝐺.

Describing the transformation fromone coordinate frame to the other is straight-
forward: Beginning in 𝑀𝑝, we 1). map to 𝑀 by applying Exp𝑝, 2). transform 𝑀 by
𝑔 , and 3). map back to𝑀𝑔𝑝 using Log𝑔𝑝. Composing these gives the transformation,

𝐷
𝑔
𝑝 ≡ Log𝑔𝑝 ◦ 𝑔 ◦ Exp𝑝 : 𝑀𝑝 → 𝑀𝑔𝑝 ∈ 𝐺, (3.3)

with the notation chosen to reflect dependence on both 𝑝 and 𝑔 , equivalently rep-
resented in the diagram

𝑀 𝑀𝑝

𝑀 𝑀𝑔𝑝

Log𝑝

𝑔 𝐷
𝑔
𝑝

Log𝑔𝑝

.

Rearranging terms, it’s easy to see that for all 𝑞 ∈ 𝑀 ,
𝐷
𝑔
𝑝 Log𝑝 𝑞 = Log𝑔𝑝 𝑔𝑞. (3.4)

From Equation (3.3) and the definitions of the generalized logarithm and expo-
nential, it can be shown that 𝐷𝑔

𝑝 0 = 0 for all 𝑝 ∈ 𝑀 as
𝐷
𝑔
𝑝 0 (3.3)

= (Log𝑔𝑝 ◦ 𝑔 ◦ Exp𝑝) 0 (3.2)
= (Log𝑔𝑝 ◦ 𝑔) 𝑝 = Log𝑔𝑝 𝑔𝑝

(3.2)
= 0.
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Thus, 𝐷𝑔
𝑝 must belong to the origin-preserving subgroup𝐻0 ⊂ 𝐺. Intuitively, this fol-

lows from the facts that 𝑝maps to 𝑔𝑝 under the action of 𝑔 and that both 𝑝 and 𝑔𝑝

are the origin in their respective tangent spaces. This simple but critical observation
implies that in defining equivariant convolution and correlation on a homogeneous
space 𝑀 ≅ 𝐺/𝐻0, we only need to consider the action of the origin-preserving sub-
group 𝐻0, rather than the full group 𝐺.

3.2 Extended convolution

Given a homogeneous space 𝑀 ≅ 𝐺/𝐻0, we view 𝑀 as a Riemannian manifold
under a given metric 𝑠, which defines an area measure 𝑑𝑝 at each point 𝑝 ∈ 𝑀

as in Equation (2.15). We implement extended convolution by shifting a filter over
the 𝑀 , aligning the shifted filter using a frame field, and distributing the values
of a density function to neighboring points, with distribution weights given by the
aligned filter.

3.2.1 The frame and density operators

Extended convolution is defined with respect to a frame operator 𝔗 and density

operator 𝜌 that take in a function 𝜓 ∈ 𝐿2(𝑀,ℂ) and return a frame field taking
values in 𝐻0 and a real- or complex-valued density field,

𝔗 : 𝐿2(𝑀,ℂ) → 𝐿2(𝑀, 𝐻0)

𝜓 ↦→ 𝔗𝜓

and
𝜌 : 𝐿2(𝑀,ℂ) → 𝐿2(𝑀,ℂ)

𝜓 ↦→ 𝜌𝜓
(3.5)

Given a transformation 𝑔 ∈ 𝐺 and a point 𝑝 ∈ 𝑀 , the frame operator corrects
for the change in relative position resulting from 𝑔 , as characterized by the origin-
preserving transformation 𝐷

𝑔
𝑝 from Equation (3.3). Similarly, the density operator

adjusts for the change in the area measure used for integration, given by the scale
factor 𝜆2

𝑔 (𝑝) as in Equation (2.18).
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3.2.2 Extending convolution

Given operators𝔗 and 𝜌, the extended convolution of a function 𝜓with with a filter
𝑓 , both in 𝐿2(𝑀,ℂ), is formally expressed as the function in 𝐿2(𝑀,ℂ) with

(𝜓 ∗ 𝑓 ) (𝑝) =
∫
𝑀

𝜌𝜓(𝑞)
[︁
𝔗𝜓(𝑞) 𝑓

]︁ (︁
Log𝑞 𝑝

)︁
𝑑𝑞, (3.6)

where𝔗𝜓(𝑞) 𝑓 ≡ 𝑓 ◦
[︁
𝔗𝜓(𝑝)

]︁−1 denotes the standard action of transformations on 𝑓

by left shifts. That is, to get the value at a point 𝑝 ∈ 𝑀 , we iterate over all neighbors
𝑞, compute the position of 𝑝 in the frame𝔗𝜓(𝑞) at 𝑞, evaluate the filter at that point,
and accumulate the density 𝜌𝜓(𝑞) at 𝑞 weighted by the filter value.

3.2.3 Equivariance

The transformation operator𝔗 and the density operator 𝜌must satisfy certain con-
ditions to ensure that extended convolutions are equivariant to transformations in
𝐺; i.e. that for any function 𝜓, filter 𝑓 , and transformation 𝑔 ∈ 𝐺, extended convo-
lution commutes with the action of 𝑔 by left shifts,

𝑔 (𝜓 ∗ 𝑓 ) = (𝑔 𝜓 ∗ 𝑓 ) (3.7)
Claim 1 (Conditions for equivariance). If for all 𝜓 ∈ 𝐿2(𝑀,ℂ) and 𝑔 ∈ 𝐺, the opera-

tors 𝔗 and 𝜌 satisfy

𝐷
𝑔
𝑝 ◦ 𝔗𝜓(𝑝) = 𝔗𝑔 𝜓(𝑔𝑝) and 𝜆−2

𝑔 (𝑝) 𝜌𝜓(𝑝) = 𝜌𝑔 𝜓(𝑔𝑝) (3.8)
for all 𝑝 ∈ 𝑀 , then for any filter 𝑓 ∈ 𝐿2(𝑀,ℂ) Equation (3.7) holds.

Proof. Suppose 𝔗 and 𝜌 satisfy the condition and consider any 𝜓 ∈ 𝐿2(𝑀,ℂ) and
𝑔 ∈ 𝐺. For any filter 𝑓 ∈ 𝐿2(𝑀,ℂ) and 𝑞 ∈ 𝑀 , we can relate the expression of the
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filter over 𝑀𝑞 to the expression of the filter over 𝑀𝑔𝑞:[︁
𝔗𝜓(𝑞) 𝑓

]︁
◦ Log𝑞 = 𝑓 ◦

[︁
𝔗𝜓(𝑞)

]︁−1 ◦ Log𝑞
(3.8)
= 𝑓 ◦

[︁
𝔗𝑔 𝜓(𝑔𝑞)

]︁−1 ◦ 𝐷𝑔
𝑞 ◦ Log𝑞

(3.3)
= 𝑓 ◦

[︁
𝔗𝑔 𝜓(𝑔𝑞)

]︁−1 ◦ Log𝑔𝑞 ◦ 𝑔

=
[︁
𝔗𝑔 𝜓(𝑔𝑞) 𝑓

]︁
◦ Log𝑔𝑞 ◦ 𝑔. (3.9)

Using the relationship between the expression of the filters over 𝑀𝑞 and 𝑀𝑔𝑞 it fol-
lows that for any 𝑝 ∈ 𝑀 ,[︁

𝑔 (𝜓 ∗ 𝑓 )
]︁
(𝑝) (3.6)

=

∫
𝑀

𝜌𝜓(𝑞)
[︁
𝔗𝜓(𝑞) 𝑓

]︁ (︁
Log𝑞 𝑔

−1𝑝
)︁
𝑑𝑞

(3.9)
=

∫
𝑀

𝜌𝜓(𝑞)
[︁
𝔗𝑔 𝜓(𝑔𝑞) 𝑓

]︁ (︁
Log𝑔𝑞 𝑝

)︁
𝑑𝑞

(3.8)
=

∫
𝑀

𝜆2
𝑔 (𝑞) 𝜌𝑔 𝜓(𝑔𝑞)

[︁
𝔗𝑔 𝜓(𝑔𝑞) 𝑓

]︁ (︁
Log𝑔𝑞 𝑝

)︁
𝑑𝑞 (3.10)

=

∫
𝑀

𝜌𝑔 𝜓(𝑞′)
[︁
𝔗𝑔 𝜓(𝑞′) 𝑓

]︁ (︁
Log𝑞′ 𝑝

)︁
𝑑𝑞′

(3.6)
= (𝑔 𝜓 ∗ 𝑓 ) (𝑝),

where the second to last equality follows from the change of variables
𝑞 ↦→ 𝑔𝑞

𝑑𝑞
(2.18)
↦→ 𝜆2

𝑔 (𝑞) 𝑑𝑞.
(3.11)

Thus,
𝑔 (𝜓 ∗ 𝑓 ) = (𝑔 𝜓 ∗ 𝑓 ),

as desired. □

In practice, rather than have the user provide the frame and density operators
directly, they can be derived from an input signal𝜓 in such away so as to satisfy the
conditions in Equation (3.8). However, this technique is a bit of an art and depends
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strongly on the specific transformation group 𝐺, stabilizer subgroup 𝐻0, and homo-
geneous space 𝑀 ≅ 𝐺/𝐻0 of interest. As a result, it is not readily generalizeable to
arbitrary homogeneous spaces and specific examples of its application to several
domains of interest are provided in the latter half of this chapter.

3.2.4 Locally-supported filters

Extended convolution defined in Equation (3.6) implicitly assumes global filter sup-
port as integration is performed over the whole of 𝑀 . However, in certain applica-
tions global support can be undesirable and in what follows we define a notion of
locally-supported extended convolution.

LetN0 ⊂ 𝑀 be an open subset containing 0 ∈ 𝑀 . Given operators 𝔗 and 𝜌 as in
Equation (3.5), we can define the extended convolution of a function 𝜓 ∈ 𝐿2(𝑀,ℂ)

with a compactly-supported filter 𝑓 ∈ 𝐿2(N0,ℂ) by restricting the domain of inte-
gration at each point 𝑝 ∈ 𝑀 to the region

N𝜓
𝑝 =

{︁
𝑞 ∈ 𝑀

|︁|︁ 𝑝 ∈
[︁
Exp𝑞 ◦ 𝔗𝜓(𝑞)

]︁
N0

}︁
, (3.12)

such that
(𝜓 ∗ 𝑓 ) (𝑝) =

∫
N𝜓

𝑝

𝜌𝜓(𝑞)
[︁
𝔗𝜓(𝑞) 𝑓

]︁ (︁
Log𝑞 𝑝

)︁
𝑑𝑞, (3.13)

where [︁
Exp𝑞◦𝔗𝜓(𝑞)

]︁
N0 is the image ofN0 under the transformationExp𝑞◦𝔗𝜓(𝑞) ∈

𝐺. Note that for any 𝑝 ∈ 𝑀 and 𝑞 ∈ N𝜓
𝑝 , it follows from Equation (3.12) that there

exists 𝑛 ∈ N0 such that 𝑝 =
(︁
Exp𝑞 ◦ 𝔗𝜓(𝑞)

)︁
𝑛 so [︁

𝔗𝜓(𝑞)
]︁−1 Log𝑞 𝑝 = 𝑛. Thus,[︁

𝔗𝜓(𝑞)
]︁−1 Log𝑞 𝑝 ∈ N0 for all 𝑝 ∈ 𝑀 and 𝑞 ∈ N𝜓

𝑝 so the convolution is well de-
fined.

We now show that locally-supported extended convolution is equivariant in the
sense of Equation (3.7) under the conditions on the operators in Equation (3.8).
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Claim 2 (Equivariance of locally-supported extended convolution). Given an open
subset N0 ⊂ 𝑀 containing 0 ∈ 𝑀 , if for all 𝜓 ∈ 𝐿2(𝑀,ℂ) and 𝑔 ∈ 𝐺, the oper-

ators 𝔗 and 𝜌 satisfy the conditions in Equation (3.8) for all 𝑝 ∈ 𝑀 , then for any

filter 𝑓 ∈ 𝐿2(N0,ℂ) Equation (3.7) holds for locally-supported extended convolution

in Equation (3.13).

Proof. Note that for any 𝑔 ∈ 𝐺 and 𝑝 ∈ 𝑀 ,
N𝜓

𝑔−1𝑝

(3.12)
=

{︁
𝑞 ∈ 𝑀

|︁|︁ 𝑔−1𝑝 ∈
[︁
Exp𝑞 ◦ 𝔗𝜓(𝑞)

]︁
N0

}︁
=

{︁
𝑞 ∈ 𝑀

|︁|︁ 𝑝 ∈
[︁
𝑔 ◦ Exp𝑞 ◦ 𝔗𝜓(𝑞)

]︁
N0

}︁
(3.3)
=

{︁
𝑞 ∈ 𝑀

|︁|︁ 𝑝 ∈
[︁
Exp𝑔𝑞 ◦ 𝐷

𝑔
𝑞 ◦ 𝔗𝜓(𝑞)

]︁
N0

}︁
(3.8)
=

{︁
𝑞 ∈ 𝑀

|︁|︁ 𝑝 ∈
[︁
Exp𝑔𝑞 ◦ 𝔗𝑔𝜓(𝑔𝑞)

]︁
N0

}︁
= 𝑔−1 {︁

𝑔𝑞 ∈ 𝑀
|︁|︁ 𝑝 ∈

[︁
Exp𝑔𝑞 ◦ 𝔗𝑔𝜓(𝑔𝑞)

]︁
N0

}︁
(3.12)
= 𝑔−1 N 𝑔𝜓

𝑝 . (3.14)
Then, following the proof of Claim 1, we have[︁

𝑔 (𝜓 ∗ 𝑓 )
]︁
(𝑝) (3.13)

=

∫
N𝜓

𝑔−1𝑝

𝜌𝜓(𝑞)
[︁
𝔗𝜓(𝑞) 𝑓

]︁ (︁
Log𝑞 𝑔

−1𝑝
)︁
𝑑𝑞

(3.10)
=

∫
N𝜓

𝑔−1𝑝

𝜆2
𝑔 (𝑞) 𝜌𝑔 𝜓(𝑔𝑞)

[︁
𝔗𝑔 𝜓(𝑔𝑞) 𝑓

]︁ (︁
Log𝑔𝑞 𝑝

)︁
𝑑𝑞

(3.14)
=

∫
𝑔−1 N 𝑔𝜓

𝑝

𝜆2
𝑔 (𝑞) 𝜌𝑔 𝜓(𝑔𝑞)

[︁
𝔗𝑔 𝜓(𝑔𝑞) 𝑓

]︁ (︁
Log𝑔𝑞 𝑝

)︁
𝑑𝑞

(3.11)
=

∫
N 𝑔𝜓

𝑝

𝜌𝑔 𝜓(𝑞′)
[︁
𝔗𝑔 𝜓(𝑞′) 𝑓

]︁ (︁
Log𝑞′ 𝑝

)︁
𝑑𝑞′

(3.13)
= (𝑔 𝜓 ∗ 𝑓 ) (𝑝).

□

Note that the definition of N𝜓
𝑝 in Equation (3.12) is dynamic in the sense that

the set of points contributing to the value of the convolution at each point 𝑝 ∈ 𝑀
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depends on 𝜓. In applications such as CNNs where convolutions are computed in
succession, this induces additional computational overhead, as the support at each
point must be recalculated for every 𝜓. However, in the special case that Log𝑝 and
𝔗𝜓(𝑝) are isometries for all 𝑝 ∈ 𝑀 and 𝜓 ∈ 𝐿2(𝑀,ℂ), the following claim holds.
Claim 3 (Invariant support). Let 𝑀 homogeneous space such that 𝑀 ≅ 𝐺/𝐻0, for

some transformation group 𝐺 and origin-stabilizing subgroup 𝐻0 ⊂ 𝐺. Then if every

transformation ℎ ∈ 𝐻0 is an isometry on𝑀 and Log : 𝑀 → 𝐺 is defined such that at

each point 𝑝 ∈ 𝑀 , Log𝑝 ∈ 𝐺 is also an isometry, then for all 𝑝 ∈ 𝑀 and 𝜓 ∈ 𝐿2(𝑀,ℂ)

N𝜓
𝑝 = N𝑝, (3.15)

whereN𝑝 denotes the geodesic ball of radius 𝜀 about 𝑝.

Proof. Suppose that for each point 𝑝 ∈ 𝑀 and function𝜓 ∈ 𝐿2(𝑀,ℂ), bothLog𝑝 ∈ 𝐺

and𝔗𝜓(𝑝) ∈ 𝐻0 are isometries on𝑀 (the latter following from the assumption that
all transformations in 𝐻0 are isometries). We now show thatN𝜓

𝑝 = N𝑝 for all 𝑝 ∈ 𝑀

and 𝜓 ∈ 𝐿2(𝑀,ℂ).
Formally, for any point 𝑝 ∈ 𝑀 ,N𝑞 ⊂ 𝑀 is the set

N𝑞 = {𝑞′ ∈ 𝑀 | 𝑑 (𝑞′, 𝑞) < 𝜀 }, (3.16)
where 𝑑 ( · , · ) is the geodesic distance. It follows that for any 𝜓 ∈ 𝐿2(𝑀,ℂ), the
image ofN0 under Exp𝑞 ◦ 𝔗𝜓(𝑞) isN𝑞 as[︁

Exp𝑞 ◦ 𝔗𝜓(𝑞)
]︁
N0

(3.16)
=

{︁ [︁
Exp𝑞 ◦ 𝔗𝜓(𝑞)

]︁
𝑞′ ∈ 𝑀

|︁|︁ 𝑑 (𝑞′, 0) < 𝜀
}︁

=

{︂
𝑞′ ∈ 𝑀

|︁|︁|︁ 𝑑 (︂ [︁
Exp𝑞 ◦ 𝔗𝜓(𝑞)

]︁−1
𝑞′, 0

)︂
< 𝜀

}︂
=

{︂
𝑞′ ∈ 𝑀

|︁|︁|︁ 𝑑 (︂
𝑞′,

[︁
Exp𝑞 ◦ 𝔗𝜓(𝑞)

]︁
0
)︂
< 𝜀

}︂
(3.2)
= { 𝑞′ ∈ 𝑀 | 𝑑 (𝑞′, 𝑞) < 𝜀}

(3.16)
= N𝑞,
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where the third equality follows from the fact that isometries preserve distances
and the fourth from the fact that 𝔗𝜓(𝑞) preserves the origin. Thus, for any 𝑝 ∈ 𝑀

N𝜓
𝑝

(3.12)
=

{︁
𝑞 ∈ 𝑀

|︁|︁ 𝑝 ∈
[︁
Exp𝑞 ◦ 𝔗𝜓(𝑞)

]︁
N0

}︁
,

= { 𝑞 ∈ 𝑀 | 𝑝 ∈ N𝑞 }
(3.16)
= { 𝑞 ∈ 𝑀 | 𝑑 (𝑝, 𝑞) < 𝜀}

(3.16)
= N𝑝,

with the final equality following from the fact that 𝑑 (𝑝, 𝑞) = 𝑑 (𝑞, 𝑝).
□

3.2.5 Optimal filters

Generally speaking, the matching of feature descriptors can be characterized as a
feature detection problem. Given an arbitrary homogeneous space 𝑀 ≅ 𝐺/𝐻0 and
a function 𝜓 ∈ 𝐿2(𝑀,ℝ), we can use extended convolution to describe the region
about an arbitrary point 𝑝 ∈ 𝑀 by designing a filter thatwillmaximize the response
at 𝑝.

Given a function 𝜓 ∈ 𝐿2(𝑀,ℝ) and fixing the maps 𝔗 and 𝜌, extended convolu-
tion and can be thought of as a map from the space of real-valued filters on 𝑀 to
the space of real-valued functions on 𝑀 ,

E𝜓 : 𝐿2(𝑀,ℝ) → 𝐿2(𝑀,ℝ)

𝑓
(3.6)
↦→ 𝜓 ∗ 𝑓

From the definition of extended convolution and the linearity of left-shifts – Equa-
tion (2.35) – it is clear that E𝜓 is linear in 𝑓 , as is the map

E𝑝
𝜓

: 𝐿2(𝑀,ℝ) → ℝ

𝑓
(3.6)
↦→ (𝜓 ∗ 𝑓 ) (𝑝)
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obtained by evaluating the function returned by E𝜓 at a point 𝑝 ∈ 𝑀 . Using the fact
that the space of filters 𝐿2(𝑀,ℝ) is an inner product space under the inner product
defined in Equation (2.17) and applying the Riesz Representation Theorem, there
exists a filter 𝑓

𝑝
𝜓
∈ 𝐿2(𝑀,ℝ) such that

E𝑝
𝜓
( 𝑓 ) ≡ ⟨ 𝑓 , 𝑓 𝑝

𝜓
⟩ (3.17)

for all 𝑓 ∈ 𝐿2(𝑀,ℝ). In particular, up to scale, 𝑓 𝑝
𝜓
is exactly the filter thatmaximizes

the response of the extended convolution at 𝑝.
To evaluate the optimal filter 𝑓

𝑝
𝜓

at arbitrary points 𝑥 ∈ 𝑀 , we can compute
its inner product with a delta function centered at 𝑥, 𝛿𝑥 . As shown above, this is
equivalent to the evaluation of the extended convolution of 𝜓 with 𝛿𝑥 at the point
𝑝:

𝑓
𝑝
𝜓
(𝑥) = ⟨ 𝛿𝑥 , 𝑓 𝑝𝜓 ⟩ (3.17)

= E𝑝
𝜓
(𝛿𝑥) = (𝜓 ∗ 𝛿𝑥) (𝑝).

In practice, we would like descriptions of the keypoint 𝑝 to be local. To this end
we note that if we restrict ourselves to filters that are supported within a geodesic
ball N0 ⊂ 𝑀 of radius 𝜀 centered at 0 ∈ 𝑀 , the filter maximizing the response of
the extended convolution at 𝑝 is still, up to scale, 𝑓 𝑝

𝜓
restricted toN0, with

𝑓
𝑝
𝜓
(𝑥) (3.13)

=

∫
N𝜓

𝑝

𝜌𝜓(𝑞)
[︁
𝔗𝜓(𝑞) 𝛿𝑥

]︁ (︁
Log𝑞 𝑝

)︁
𝑑𝑞, (3.18)

whereN𝜓
𝑝 is defined as in Equation (3.12).

Invariance

From the extended convolution, the optimal filters inherit the desirable property of
invariance to transformations in 𝐺, i.e. for any 𝜓 ∈ 𝐿2(𝑀,ℂ) and 𝑝 ∈ 𝑀 ,

𝑓
𝑝
𝜓
= 𝑓

𝑔𝑝
𝑔𝜓

, (3.19)
for all 𝑔 ∈ 𝐺.
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Claim 4 (Invariance of optimal filters). If for all 𝜓 ∈ 𝐿2(𝑀,ℂ) and 𝑔 ∈ 𝐺, the op-

erators 𝔗 and 𝜌 satisfy the conditions in Equation (3.8) for all 𝑝 ∈ 𝑀 , then for any

𝜓 ∈ 𝐿2(𝑀,ℂ), 𝑔 ∈ 𝐺, and 𝑝 ∈ 𝑀 , Equation (3.19) holds.

Proof. Given 𝔗 and 𝜌 satisfying the conditions in Equation (3.8), the proof follows
trivially from Claim 2: For any 𝜓 ∈ 𝐿2(𝑀,ℂ), 𝑔 ∈ 𝐺, and 𝑝 ∈ 𝑀 , we have

𝑓
𝑝
𝜓
(𝑥) (3.18)

= (𝜓 ∗ 𝛿𝑥) (𝑝)
Claim 2
= (𝑔𝜓 ∗ 𝛿𝑥) (𝑔𝑝)

(3.18)
= 𝑓

𝑔𝑝
𝑔𝜓

(𝑥),

for all 𝑥 ∈ N0. □

3.3 Realization on the canonical domains

Weconclude this chaptermaking the general theory presented in §3.1−3.2 concrete
by realizing equivariant extended convolutions on the planeℂ, the Riemann sphereˆ︁ℂ, and the disk 𝔻.

3.3.1 Extended convolution on ℂ

Recalling that SE(2) is the group of isometries of the plane, viewing ℂ as the ho-
mogeneous space SE(2)/U(1) allows us to define isometry-equivariant extended
convolutions and correlations.

Onℂwedefine the generalized logarithmat 𝑧 ∈ ℂ as element of the translational
subgroup of both SE(2) taking 𝑧 to 0 ∈ ℂ,

Log𝑧 ≡
[︃

1 −𝑧
0 1

]︃
. (3.20)

It is easy to see that for 𝜅 : SE(2)/U(1) → ℂ as defined in Equation (2.4), the defini-
tion of Log𝑧 in Equation (3.20) satisfies the condition in Equation (3.2) with

˜︁𝜋 (︂
Log−1

𝑧

)︂
= 𝑧.
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Note that for any 𝑧, 𝑦 ∈ ℂ,
Log𝑧 𝑦 = 𝑦 − 𝑧,

which to the classical definition of the relative position of 𝑦 with respect to 𝑧 in the
plane.

Here the frame and density operators are maps
𝔗 : 𝐿2(ℂ,ℂ) → 𝐿2(ℂ,U(1)) and 𝜌 : 𝐿2(ℂ,ℂ) → 𝐿2(ℂ,ℂ).

From Equation (3.6), the general form of the extended convolution of a function 𝜓

with a filter 𝑓 , both in 𝐿2(ℂ,ℂ), is
(𝜓 ∗ 𝑓 ) ( 𝑦) (3.6)

=

∫
ℂ

𝜌𝜓(𝑧)
[︁
𝔗𝜓(𝑧) 𝑓

]︁ (︁
Log𝑧 𝑦

)︁
𝑑𝑧

(3.20)
=

∫
ℂ

𝜌𝜓(𝑧)
[︁
𝔗𝜓(𝑧) 𝑓

]︁
( 𝑦 − 𝑧) 𝑑𝑧,

(3.21)

with 𝑑𝑧 the standard areameasure under the Euclideanmetric as in Equation (2.23).
Construction of Operators

Recall that for the extended convolution to be equivariant under the action of trans-
formations 𝑔 ∈ SE(2) in the sense of Equation (3.7), 𝔗 and 𝜌must satisfy the condi-
tions in Equation (3.8) for 𝑀 = ℂ, 𝐺 = SE(2), and 𝐷

𝑔
𝑧 ∈ U(1).

Claim 5 (Planar frame fields). If 𝔗 is defined as

𝔗𝜓(𝑥) ≡
[︃ sgn 𝑑 Log𝑥 𝜓|︁|︁

0 0
0 1

]︃
, (3.22)

where 𝑑 Log𝑥 𝜓|︁|︁
0 ∈ ℂ is the differential of Log𝑥 𝜓 evaluated at the origin and sgn is

the complex signum function 𝑧 ↦→ 𝑧 |𝑧 |−1, then the condition for the frame operator

in Equation (3.8) is satisfied.

Proof. For any 𝜓 ∈ 𝐿2(ℂ,ℂ) and 𝑔 ∈ SE(2) it follows from Equation (3.3) that for
any point 𝑥 ∈ ℂ the transformation 𝐷

𝑔
𝑥 : ℂ𝑥 → ℂ𝑔𝑥 describing the deformation of
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the tangent space at 𝑥 is an element of the origin-preserving subgroup U(1), and
we denote 𝐷𝑔

𝑥 =
[︁
𝑒𝑖𝜃 0
0 1

]︁ for some 𝜃 ∈ [0, 2𝜋). Furthermore,
(Log𝑔𝑥 ◦ 𝑔) 𝜓

(3.3)
= (𝐷𝑔

𝑥 ◦ Log𝑥)𝜓,

for all 𝑥 ∈ ℂ, and applying the chain rule and evaluating at the origin using Equa-
tion (2.25) gives

𝑑 (Log𝑔𝑥 ◦ 𝑔) 𝜓
|︁|︁
0 = 𝑒−𝑖𝜃

[︁
𝑑 Log𝑥𝜓

|︁|︁
0
]︁
. (3.23)

Then,
𝔗𝑔𝜓(𝑔𝑥)

(3.22)
=

[︃
sgn 𝑑 (Log𝑔𝑥 ◦ 𝑔) 𝜓|︁|︁

0 0
0 1

]︃
(3.23)
=

[︃
𝑒𝑖𝜃 sgn 𝑑 Log𝑥 𝜓|︁|︁

0 0
0 1

]︃
=

[︃
𝑒𝑖𝜃 0
0 1

]︃
⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞
= 𝐷

𝑔
𝑥

[︃
sgn 𝑑 Log𝑥 𝜓|︁|︁

0 0
0 1

]︃
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

(3.22)
= 𝔗𝜓(𝑥)

as desired. □

Since elements of SE(2) are isometries of the plane, we have 𝜆2
𝑔 (𝑧) = 1 for all

𝑔 ∈ SE(2) and 𝑧 ∈ ℂ. This gives significant flexibility in how we define the density
operator, however the definition of 𝔗𝜓 in Equation (3.22) motivates defining 𝜌 as

𝜌𝜓(𝑥) ≡
|︁|︁𝑑 Log𝑥 𝜓|︁|︁

0

|︁|︁. (3.24)
This way, at a point where𝔗𝜓(𝑥) is ill-defined – those at which 𝑑 Log𝑥𝜓

|︁|︁
0 vanishes –

𝜌𝜓(𝑥) also vanishes and the point contributes nothing to the extended convolution.
We also note that for any 𝑥 ∈ ℂ, the differential of the generalized exponential

Exp𝑥 = Log−1
𝑥 is constant with

𝑑 Exp𝑥 = 1,
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and that in the plane, the differential of a function is equivalent to the gradient,
since the Euclidean metric is the identity. Thus 𝔗𝜓 and 𝜌𝜓 as defined in Equa-
tions (3.22) and (3.24) can be equivalently expressed as

𝔗𝜓(𝑥) =
[︃ sgn∇𝜓|𝑥 0

0 1

]︃
and 𝜌𝜓(𝑥) =

|︁|︁∇𝜓|𝑥
|︁|︁, (3.25)

where ∇𝜓 denotes the gradient of 𝜓.
Optimal filters

Assuming filters are compactly-supported on an 𝜀-disk N0 about the origin, then
for any function 𝜓 ∈ 𝐿2(ℂ,ℝ), at each point 𝑦 ∈ ℂ extended convolution is locally-
supported onN𝜓

𝑦 = N𝑦 since Log𝑧 and elements of U(1) are isometries of the plane.
Here, the filter maximizing the response of the planar extended convolution at a
given point 𝑦 ∈ ℂ is given by

𝑓
𝑦
𝜓
(𝑥) (3.18)

=

∫
N𝑦

𝜌𝜓(𝑧)
[︁
𝔗𝜓(𝑧) 𝛿𝑥

]︁ (︁
𝑦 − 𝑧) 𝑑𝑧. (3.26)

It follows fromClaims 4 and 5 that 𝑓 𝑦
𝜓
is invariant under transformations in SE(2) in

the sense of Equation (3.19) if 𝔗 and 𝜌 are defined as in Equations (3.22) and (3.24)
(or equivalently Equation (3.25) )

3.3.2 Extended convolution on ˆ︁ℂ
Viewingˆ︁ℂ as thehomogeneous space SL(2,ℂ)/L, wedefine conformally-equivariant
extended convolutions under the action of SL(2,ℂ).

Note that the choice of generalized logarithm in Equation (3.20) is ill-defined
at ∞ ∈ ˆ︁ℂ. Instead, we define the generalized logarithm at 𝑧 ∈ ˆ︁ℂ as a rotation
Log𝑧 ∈ SU(2) taking 𝑧 to the origin,

Log𝑧 ≡
1

|𝑐|
√︁

1 + |𝑧 |2

[︃
𝑐 −𝑐𝑧
�̄��̄� �̄�

]︃
, (3.27)
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where 𝑐 ∈ ˆ︁ℂ is arbitrary. This definition of the generalized logarithm iswell-defined
at 𝑧 = ∞ with Log∞ = 1

|𝑐|
[︁ 0 −𝑐
�̄� 0

]︁ , and satisfies the condition in Equation (3.2):

˜︁𝜋 (︂
Log−1

𝑧

)︂ (3.27)
= ˜︁𝜋 (︄

1

|𝑐|
√︁

1 + |𝑧 |2

[︃
�̄� 𝑐𝑧

−�̄��̄� 𝑐

]︃)︄
(2.6)
= 𝑧,

with the second equality following from the fact that the conjugate transpose is
equivalent to the inverse of an element in SU(2). While any choice of 𝑐 in the defi-
nition of the generalized logarithm gives a rotation taking 𝑧 to the origin, here we
set 𝑐 =

√
�̄� which ensures that the great circle going through the origin and 𝑧 is

mapped to the real line, enabling the use of the fast Spherical Harmonic Transform
[DH94, KR08] in Chapter 7.

The frame and density operators are maps
𝔗 : 𝐿2(ˆ︁ℂ,ℂ) → 𝐿2(ˆ︁ℂ, L) and 𝜌 : 𝐿2(ˆ︁ℂ,ℂ) → 𝐿2(ˆ︁ℂ,ℂ),

and the extended convolution of a function 𝜓 with a filter 𝑓 , both in 𝐿2(ˆ︁ℂ,ℂ), is
(𝜓 ∗ 𝑓 ) ( 𝑦) (3.6)

=

∫
ˆ︁ℂ 𝜌𝜓(𝑧)

[︁
𝔗𝜓(𝑧) 𝑓

]︁ (︁
Log𝑧 𝑦

)︁
𝑑𝑧, (3.28)

with 𝑑𝑧 the area measure under the round metric as in Equation (2.27).
Construction of operators

For extended convolution on ˆ︁ℂ to be equivariant under the action of Möbius trans-
formations 𝑔 ∈ SL(2,ℂ) in the sense of Equation (3.7), 𝔗 and 𝜌 must satisfy the
conditions in Equation (3.8) for 𝑀 = ˆ︁ℂ, 𝐺 = SL(2,ℂ), and 𝐷

𝑔
𝑧 ∈ L.

Claim 6 (Conformal frame fields). If 𝔗 is defined as

𝔗𝜓(𝑥) ≡
[︄ [︁

𝑑 Log𝑥𝜓|︁|︁
0
]︁− 1

2 0
1
2
[︁
∇𝑑 Log𝑥𝜓|︁|︁

0
]︁ [︁

𝑑 Log𝑥𝜓|︁|︁
0
]︁− 3

2
[︁
𝑑 Log𝑥𝜓|︁|︁

0
]︁ 1

2

]︄
(3.29)

where 𝑑 Log𝑥𝜓|︁|︁
0, ∇𝑑 Log𝑥𝜓|︁|︁

0 ∈ ℂ are the differential andHessian of Log𝑥𝜓 evaluated

at the origin, then the condition for the frame operator in Equation (3.8) is satisfied.
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Frame Operator Density Operator

𝜓

𝑔𝜓

𝑔 𝐷
𝑔
𝑧 𝑒

log𝑧

log𝑔𝑧

𝔗𝜓(𝑧)

𝔗𝑔𝜓(𝑔𝑧)

𝑧

𝑔𝑧

𝑔 𝜆2
𝑔 ·

𝜌𝜓

𝜌𝑔𝜓

0

+

−

ln 𝜌

Figure 3-1. Conformally-equivariant convolutions on ˆ︁ℂ require two ingredients: a
frame operator and a density operator. Filters assign weights based on the relativepositions of points and the frame operator 𝔗 corrects for the deformation of thelocal “tangent space” under a Möbius transformation 𝑔 ∈ SL(2,ℂ). Similarly, thedensity operator 𝜌 adjusts for the change in the area measure used for integration,proportional to the conformal scale factor 𝜆2

𝑔 .
Proof. For any 𝜓 ∈ 𝐿2(ˆ︁ℂ,ℂ) and 𝑔 ∈ SL(2,ℂ) it follows that for any point 𝑥 ∈ ˆ︁ℂ,
𝐷
𝑔
𝑥 : ˆ︁ℂ𝑥 → ˆ︁ℂ𝑔𝑥 ∈ L and we denote 𝐷𝑔

𝑥 =
[︁
𝑎 0
𝑛 𝑎−1

]︁ . As in the planar case, applying the
chain rule and evaluating at the origin using Equation (2.24) gives

𝑑 (Log𝑔𝑥 ◦ 𝑔) 𝜓
|︁|︁
0 = 𝑎−2 [︁𝑑 Log𝑥𝜓

|︁|︁
0
]︁ (3.30)

and
∇𝑑 (Log𝑔𝑥 ◦ 𝑔) 𝜓

|︁|︁
0 = 𝑎−4 [︁∇𝑑 Log𝑥𝜓

|︁|︁
0
]︁
+ 2𝑛𝑎−3 [︁𝑑 Log𝑥𝜓

|︁|︁
0
]︁
. (3.31)

Then, the upper diagonal element of 𝔗𝑔𝜓(𝑔𝑥) is given by[︁
𝔗𝑔 𝜓(𝑔𝑥)

]︁
11

(3.29)
=

[︁
𝑑 (Log𝑔𝑥 ◦ 𝑔) 𝜓|︁|︁

0
]︁− 1

2

(3.30)
= 𝑎

[︁
𝑑 Log𝑥𝜓|︁|︁

0
]︁− 1

2

(3.29)
= 𝑎

[︁
𝔗𝜓(𝑥)

]︁
11.

A similar argument shows that the lower diagonal element satisfies [︁
𝔗𝑔 𝜓(𝑔𝑥)

]︁
22 =
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𝑎−1 [︁𝔗𝜓(𝑥)
]︁

22. For the nonzero off-diagonal element we have[︁
𝔗𝑔𝜓(𝑔𝑥)

]︁
21

(3.29)
=

1
2
[︁
∇𝑑 (Log𝑔𝑥 ◦ 𝑔) 𝜓

|︁|︁
0
]︁ [︁

𝑑 (Log𝑔𝑥 ◦ 𝑔) 𝜓
|︁|︁
0
]︁− 3

2

(3.31)
= 𝑛

[︁
𝑑 Log𝑥𝜓

|︁|︁
0
]︁− 1

2 + 𝑎−1 1
2
[︁
∇𝑑 Log𝑥𝜓

|︁|︁
0
]︁ [︁

𝑑Log𝑥𝜓
|︁|︁
0
]︁− 3

2

(3.29)
= 𝑛

[︁
𝔗𝜓(𝑥)

]︁
11 + 𝑎−1 [︁

𝔗𝜓(𝑥)
]︁

21,

from which it follows that
𝐷
𝑔
𝑥 ◦ 𝔗𝜓(𝑥) = 𝔗𝑔𝜓(𝑔𝑥)

as desired. □

Claim 7 (Conformal densities). If 𝜌 is defined as
𝜌𝜓(𝑥) ≡

|︁|︁|︁ 𝑑 Log𝑥𝜓|︁|︁
0

|︁|︁|︁ 2 (3.32)
then the condition for the density operator in Equation (3.8) is satisfied.

Proof. FromEquations (3.27) and (2.24), the differential of the generalized exponen-
tial Exp𝑥 = Log−1

𝑥 at the origin is given by
𝑑 Exp𝑥

|︁|︁
0 =

|𝑐|2(1 + |𝑥 |2)
𝑐2 ,

from which it follows that |︁|︁|︁𝑑 Exp𝑥

|︁|︁
0

|︁|︁|︁ = (1 + |𝑥 |2) (3.33)
for any choice of 𝑐 ∈ ℂ. Then, for any 𝑔 ∈ SL(2,ℂ) applying the chain rule to the
definition of 𝐷𝑔

𝑥 in Equation (3.3) gives|︁|︁|︁𝑑 𝐷
𝑔
𝑥

|︁|︁
0

|︁|︁|︁ 2 (3.3)
=

|︁|︁|︁𝑑 Exp𝑥

|︁|︁
0

|︁|︁|︁ 2 |︁|︁|︁𝑑 𝑔
|︁|︁
𝑥

|︁|︁|︁ 2 |︁|︁|︁𝑑 Log𝑔𝑥
|︁|︁
𝑔𝑥

|︁|︁|︁ 2

=

|︁|︁|︁𝑑 Exp𝑥

|︁|︁
0

|︁|︁|︁ 2 |︁|︁|︁𝑑 𝑔
|︁|︁
𝑥

|︁|︁|︁ 2 |︁|︁|︁𝑑 Exp𝑔𝑥

|︁|︁
0

|︁|︁|︁−2

(3.33)
= (1 + |𝑥 |2)2

(︃
1

|𝑐𝑥 + 𝑑 |4

)︃ (︃
1

(1 + |𝑔𝑥 |2)2

)︃
=

(1 + |𝑥 |2)2

(1 + |𝑔𝑥 |2)2 |𝑐𝑥 + 𝑑 |4
(2.29)
= 𝜆2

𝑔 (𝑥), (3.34)
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where the second equality follows from the fact that Log𝑥 is an isometry of ˆ︁ℂ with
Log−1

𝑥 = Exp𝑥 . It follows that for any 𝜓 ∈ 𝐿2(ˆ︁ℂ,ℂ) and 𝑔 ∈ SL(2,ℂ),
𝜌𝑔𝜓(𝑔𝑥)

(3.32)
=

|︁|︁|︁ 𝑑 (Log𝑔𝑥 ◦ 𝑔) 𝜓
|︁|︁
0

|︁|︁|︁ 2

(3.3)
=

|︁|︁|︁ 𝑑 (𝐷𝑔
𝑥 ◦ Log𝑥) 𝜓

|︁|︁
0

|︁|︁|︁ 2

=

|︁|︁|︁ 𝑑 Log𝑥𝜓 ◦
[︁
𝐷
𝑔
𝑥

]︁−1|︁|︁
0

|︁|︁|︁ 2

=

|︁|︁|︁ 𝑑 𝐷
𝑔
𝑥

|︁|︁
0

|︁|︁|︁−2 |︁|︁|︁ 𝑑 Log𝑥𝜓
|︁|︁
0

|︁|︁|︁ 2

(3.34)
= 𝜆−2

𝑔 (𝑥)
|︁|︁|︁ 𝑑 Log𝑥𝜓

|︁|︁
0

|︁|︁|︁ 2

(3.32)
= 𝜆−2

𝑔 (𝑥) 𝜌𝜓(𝑥),

as desired. □

3.3.3 Extended convolution on 𝔻

Last, we realize isometry-equivariant extended convolutions on the hyperbolic disk
𝔻 ≅ SU(1, 1)/U(1). While we do not consider this formulation in the applications
discussed in Part II, it is presented here for the sake of completeness.

The generalized logarithm on𝔻 can be defined in a similar manner as was done
for ˆ︁ℂ in §3.3.2. Specifically, the generalized logarithm at a point 𝑧 ∈ 𝔻 is the hyper-
bolic rotation Log𝑧 ∈ SU(1, 1) taking 𝑧 to the origin

Log𝑧 ≡
1

|𝑐|
√︁

1 − |𝑧 |2

[︃
𝑐 −𝑐𝑧

−�̄��̄� �̄�

]︃
, (3.35)

where 𝑐 ∈ ℂ is arbitrary. It’s easy to see that the generalized logarithm is well-
defined for all 𝑧 ∈ 𝔻 and that it satisfies the condition in Equation (3.2):

˜︁𝜋 (︂
Log−1

𝑧

)︂ (3.35)
= ˜︁𝜋 (︄

1

|𝑐|
√︁

1 − |𝑧 |2

[︃
𝑐 𝑐𝑧
�̄��̄� �̄�

]︃)︄
(2.11)
= 𝑧.

Recalling that U(1) is the origin-preserving subgroup of SU(1, 1), the frame and
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density operators are maps
𝔗 : 𝐿2(𝔻,ℂ) → 𝐿2(𝔻,U(1)) and 𝜌 : 𝐿2(𝔻,ℂ) → 𝐿2(𝔻,ℂ),

and the extended convolution of a function 𝜓 with a filter 𝑓 , both in 𝐿2(𝔻,ℂ), is
(𝜓 ∗ 𝑓 ) ( 𝑦) (3.6)

=

∫
𝔻

𝜌𝜓(𝑧)
[︁
𝔗𝜓(𝑧) 𝑓

]︁ (︁
Log𝑧 𝑦

)︁
𝑑𝑧, (3.36)

with 𝑑𝑧 the area measure under the hyperbolic metric as in Equation (2.33).
Construction of operators

For extended convolution to be equivariant under SU(1, 1) – the group of isome-
tries of the disk – the frame and density operators must satisfy conditions in Equa-
tion (3.8) for 𝑀 = 𝔻, 𝐺 = SU(1, 1), and 𝐷

𝑔
𝑧 ∈ U(1). Namely, defining 𝔗 and 𝜌 in a

similar manner as was done for extended convolution in the plane

𝔗𝜓(𝑥) ≡
⎡⎢⎢⎢⎢⎢⎣

[︂sgn 𝑑 Log𝑥 𝜓|︁|︁
0

]︂ 1
2 0

0
[︂sgn 𝑑 Log𝑥 𝜓|︁|︁

0

]︂− 1
2

⎤⎥⎥⎥⎥⎥⎦
𝜌𝜓(𝑥) ≡

|︁|︁𝑑 Log𝑥 𝜓|︁|︁
0

|︁|︁,
ensures the conditions are satisfied. The proof follows the same argument in that
of Claim 5.

3.4 Convolution vs. correlation

In applications, convolutions are often replaced by correlations, which are perhaps
more intuitive as they are, in essence, moving dot products. In the plane, the cor-
relation of a function 𝜓 ∈ 𝐿2(ℂ,ℂ) with a filter 𝑓 ∈ 𝐿2(ℂ,ℂ) is expressed as the
function

(𝜓★ 𝑓 ) (𝑧) =
∫
ℂ

𝜓( 𝑦) 𝑓 ( 𝑦 − 𝑧) 𝑑 𝑦. (3.37)
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Its interpretation is straight-forward: correlation slides the filter across the plane
and at each point 𝑧, the value of 𝜓 at each neighboring point 𝑦 is weighted by the
(conjugated) value of the filter at the relative position of 𝑦 as seen from 𝑧, which is
given by 𝑦 − 𝑧. This is exactly equivalent to evaluating the inner product of 𝜓with
the filter 𝑓 recentered at 𝑧.

Recalling that for any points 𝑝, 𝑞 ∈ 𝑀 , the generalized logarithm of 𝑞 with re-
spect to 𝑝 gives us a description of the “position” of 𝑞 as seen from 𝑝, we extend
correlation to allow the filter to adaptively transform in a similar manner as was
done for convolution in §3.2. Namely, given maps 𝔗 and 𝜌 as in Equation (3.5), we
define the extended correlation of a function𝜓 ∈ 𝐿2(𝑀,ℂ)with a filter 𝑓 ∈ 𝐿2(𝑀,ℂ)

to be the function in 𝐿2(𝑀,ℂ) with
(𝜓★ 𝑓 ) (𝑝) =

∫
𝑀

𝜌𝜓(𝑞)
[︁
𝔗𝜓(𝑝) 𝑓

]︁ (︁
Log𝑝 𝑞

)︁
𝑑𝑞. (3.38)

Furthermore, it can be shown that if𝔗 and 𝜌 satisfy the conditions in Equation (3.8),
then the extended correlation is equivariant under transformations in 𝐺 in the
same sense as the extended convolution with

𝑔 (𝜓 ∗ 𝑓 ) = (𝑔 𝜓 ∗ 𝑓 ).

So, why are we focusing on convolution? After all, the extended correlation has
the same equivariance properties and is more intuitive – why bother with convolu-
tion?

To answer this question, we can look at how extended correlation and extended
convolution each distribute the weights determined by the filter. Specifically, ex-
tended correlation is a gathering operation – at each point 𝑝 ∈ 𝑀 the filter weights
are distributed with respect to the single coordinate frame 𝔗𝜓(𝑝) at 𝑝. In other
words, the operation is equivalent to taking the dot product of a function 𝜓 with
the filter that has first been transformed by 𝔗𝜓(𝑝), then recentered at 𝑝. In con-
trast, extended convolution is a scattering operation. Filter weights are distributed
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by having each neighbor 𝑞 describe the position of the point 𝑝 in their own coordi-
nate frames 𝔗𝜓(𝑞).

In applications, the problem with extended correlation is that gathering opera-
tionswith frame fields are inherently fragile. On the plane and the Riemann sphere,
the framefields – Equations (3.22) and (3.29) – are defined relative to the differential
and Hessian of Log𝑥 𝜓. While this gives us a repeatable recipe for equivariant con-
volutions (and correlations), we can see that the frames are ill-defined whenever
the differential vanishes. In a gathering operation such as extended correlation
wherein the response at 𝑝 is depends entirely on𝔗𝜓(𝑝), the operation is ill-defined
wherever the frame is ill-defined. Furthermore, the dependence of the response
on a single coordinate frame makes extended correlation highly sensitive to distur-
bances of the frame field. If the frame at a given point is perturbed, either due to
noise or other artifacts in the calculation, then the response of the extended correla-
tion will change significantly, as the contribution of each of the neighboring values
will be affected.

In contrast, scattering operations like extended convolution are naturally robust.
If the frame at a given point is perturbed or ill-defined, it has no effect on the re-
sponse of the convolution at the point since the assignment of filterweights depends
on the frames of its neighbors. Furthermore, if the frames at several neighboring
points are influenced by noise or other nuisance factors, only their contributions
to the response will be affected. Then, if the majority of the neighboring frames
remain relatively stable, the effect of this perturbation will be minimized and the
value of the convolution will also remain stable.
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Chapter 4

Extended Convolution on Surfaces

In applications, we will be interested in analyzing functions on the surfaces of 3D
shapes. The challenge performing spatial aggregations on surfaces is that classical
notions of convolution and correlation in Euclidean spaces cannot simply be trans-
posed onto curved domains. Unlike images, points on a surface have no canonical
orientation, without which simple operations fundamental to the spatial propaga-
tion of information, such as the alignment of filters with the local signal, cannot be
computed in a repeatable manner. A key strength of extended convolution is that
it entirely sidesteps this problem – no canonical frame is needed as we define our
own.

In what follows we define a notion of extended convolution on arbitrary 2D sur-
faces (2D oriented Riemannian manifolds), which then generalize to a convolution
operator on surface vector fields we call field convolution. While any homogeneous
space can be viewed as a Riemannianmanifold, an arbitrary 2D surface is not neces-
sarily a homogeneous space. This lack of additional structurewill force us to retreat
from designing convolutions equivariant to arbitrary diffeomorphisms, and here
we restrict our focus to isometries. However, aswewill demonstrate through exper-
iments in the latter half of this thesis, the resulting framework is highly descriptive
and robust, and is well-suited to feature description and CNNs on surfaces.
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4.1 Extended convolution

An arbitrary 2D surface𝑀 is not necessarily a homogeneous space, and as such, we
cannot define a notion of the generalized logarithm as an element of a transforma-
tion group as discussed in §3.1.1. Given points 𝑝 and 𝑞 in𝑀 , we revert to expressing
the “position” of 𝑞 in the frame at 𝑝 as the point in 𝑇𝑝𝑀 given by the Riemannian
logarithm of 𝑞 with respect to 𝑝, denoted log𝑝 𝑞 as in Equation (2.13).

On surfaces, the frame and density operators are defined in a similar manner as
on homogeneous spaces (§3.2.1). Formally, the frame operator 𝔗 maps a function
𝜓 ∈ 𝐿2(𝑀,ℂ) to a frame field 𝔗𝜓, associating to each point 𝑝 ∈ 𝑀 an orthonormal
map 𝔗𝜓(𝑝) from the plane to the tangent space at 𝑝. That is, if F𝑀 is the fiber
bundle with F𝑀𝑝 the group of orthonormal transformations from ℂ to 𝑇𝑝𝑀 , then
𝔗𝜓 ∈ Γ(F𝑀) is a section of this bundle, and we write

𝔗 : 𝐿2(𝑀,ℂ) → Γ(F𝑀) and 𝜌 : 𝐿2(𝑀,ℂ) → 𝐿2(𝑀,ℂ) . (4.1)
Assuming the basis {e1, e2}𝑝 assigned to 𝑇𝑝𝑀 is orthonormal for all 𝑝 ∈ 𝑀 , the ac-
tion of the orthonormal map 𝔗𝜓(𝑝) taking ℂ to 𝑇𝑝𝑀 is equivalent to multiplication
by a unit complex number 𝑒𝑖𝜙𝑝 ∈ U(1), for some 𝜙𝑝 ∈ [0, 2𝜋). In what follows we
will abuse notation and consider the frame operator to be a map

𝔗 : 𝐿2(𝑀,ℂ) → 𝐿2(𝑀,U(1)) (4.2)
though formally the frame field belongs to Γ(F𝑀).

Functions 𝜓 on a surface are convolved with planar filters 𝑓 ∈ 𝐿2(ℂ,ℂ). Since
the logarithm is only well-defined locally, at each point 𝑝 filters are supported on
log𝑝(N𝑝) ⊂ ℂ – the image of the geodesic 𝜀-ball about 𝑝, N𝑝 ⊂ 𝑀 , under the loga-
rithm at 𝑝. Specifically, the extended convolution of a function 𝜓 ∈ 𝐿2(𝑀,ℂ) with
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a filter 𝑓 ∈ 𝐿2(ℂ,ℂ) is the function in 𝐿2(𝑀,ℂ) with
(𝜓 ∗ 𝑓 ) (𝑝) =

∫
N𝑝

𝜌𝜓(𝑞)
[︁
𝔗𝜓(𝑞) 𝑓

]︁
(log𝑞 𝑝) 𝑑𝑞. (4.3)

4.1.1 Isometry-equivariance

The role of the frame field is to correct for the rotation of the tangent space induced
by isometries 𝜸 : 𝑀 → 𝑀′, between surfaces 𝑀 and 𝑀′. In fact, if the frame and
density operators satisfy a similar property as in Claim 1, then the extended convo-
lution commutes with local isometries of the surface.
Claim 8 (Isometry-equivariant extended convolution on surfaces). Consider sur-
faces 𝑀 and 𝑀′ and any two points 𝑝 ∈ 𝑀 and 𝑝′ ∈ 𝑀′. Let N𝑝 ⊂ 𝑀 and N ′

𝑝′ ⊂ 𝑀′

be 𝜀−balls about the points and suppose thatN𝑝 andN ′
𝑝′ are isometric. That is, there

exists a map 𝜸 : 𝑀 → 𝑀′ taking 𝑝 to 𝑝′ and satisfying ∀𝑞1, 𝑞2 ∈ N𝑝,

𝑑 (𝑞0, 𝑞1) = 𝑑
(︁
𝑞′0, 𝑞

′
1
)︁
, 𝑞′𝑖 = 𝜸(𝑞𝑖) ∈ N ′

𝑝′, (4.4)
where 𝑑 ( · , · ) is the geodesic distance. Then, if for all 𝜓 ∈ 𝐿2(𝑀,ℂ), 𝔗 and 𝜌 satisfy[︁

𝑑𝜸 |𝑝
]︁
◦ 𝔗𝜓(𝑞) = 𝔗𝜸𝜓( 𝜸(𝑞) ) and 𝜌𝜓(𝑞) = 𝜌𝜸𝜓( 𝜸(𝑞) ) (4.5)

for all 𝑞 ∈ N𝑝, then for any filter 𝑓 , the extended convolution commutes with 𝜸 at 𝑝

such that

(𝜓 ∗ 𝑓 ) (𝑝) = (𝜸𝜓 ∗ 𝑓 ) ( 𝜸(𝑝) ). (4.6)
Proof. Suppose 𝔗 and 𝜌 satisfy the conditions in Equation (4.5) for some locally
isometric diffeomorphism 𝜸 : 𝑀 → 𝑀′ at 𝑝 ∈ 𝑀 . Recall that for 𝑞 ∈ N𝑝, the action
of the differential 𝑑𝜸 |𝑞 : 𝑇𝑞𝑀 → 𝑇𝜸(𝑞)𝑀

′ can be expressed as a rotation by an angle
𝛾𝑞 as in Equation (2.20), so the condition for the frame operator in Equation (4.5)
can be equivalently expressed as

𝑒𝑖𝛾𝑞 ◦ 𝔗𝜓(𝑞) = 𝔗𝜸𝜓( 𝜸(𝑞) ). (4.7)
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It follows that for any filter 𝑓 and 𝑞 ∈ N𝑝, we can relate the expression of the filter
over 𝑇𝑞𝑀 to the expression of the filter over 𝑇𝜸(𝑞)𝑀′:[︁

𝔗𝜓(𝑞) 𝑓
]︁
( log𝑞 𝑝 ) = 𝑓

(︂ [︁
𝔗𝜓(𝑞)

]︁−1 log𝑞 𝑝
)︂

(4.7)
= 𝑓

(︂ [︁
𝔗𝜸𝜓( 𝜸(𝑞) )

]︁−1
𝑒𝑖𝛾𝑞 log𝑞 𝑝

)︂
(2.21)
= 𝑓

(︂ [︁
𝔗𝜸𝜓( 𝜸(𝑞) )

]︁−1 log𝜸(𝑞) 𝜸(𝑝)
)︂

=
[︁
𝔗𝜸𝜓( 𝜸(𝑞) ) 𝑓

]︁
( log𝜸(𝑞) 𝜸(𝑝) ) (4.8)

Using this relationship we have
(𝜓 ∗ 𝑓 ) (𝑝) (4.3)

=

∫
N𝑝

𝜌𝜓(𝑞)
[︁
𝔗𝜓(𝑞) 𝑓

]︁ (︁
log𝑞 𝑝

)︁
𝑑𝑞

(4.8)
=

∫
N𝑝

𝜌𝜓(𝑞)
[︁
𝔗𝜸𝜓( 𝜸(𝑞) ) 𝑓

]︁ (︁
log𝜸(𝑞) 𝜸(𝑝)

)︁
𝑑𝑞

(4.5)
=

∫
N𝑝

𝜌𝜸𝜓( 𝜸(𝑞) )
[︁
𝔗𝜸𝜓( 𝜸(𝑞) ) 𝑓

]︁ (︁
log𝜸(𝑞) 𝜸(𝑝)

)︁
𝑑𝑞

=

∫
N ′

𝜸 (𝑝)

𝜌𝜸𝜓(𝑞′)
[︁
𝔗𝜸𝜓(𝑞′) 𝑓

]︁ (︁
log𝑞′ 𝜸(𝑝)

)︁
𝑑𝑞′

(4.3)
= (𝜸𝜓 ∗ 𝑓 ) ( 𝜸(𝑝) ),

where the second to last equality follows from the change of variables,
𝑞 ↦→ 𝜸(𝑞) = 𝑞′

N𝑝 ↦→ 𝜸
(︁
N𝑝

)︁
= N ′

𝜸(𝑝) ,
(4.9)

with 𝑑𝑞 = 𝑑𝜸(𝑞) since 𝜸 is an isometry. □

Construction of operators

Constructing operators𝔗 and 𝜌 that satisfy the conditions in Equation (4.5) is straight-
forward and mirrors the corresponding approach for extended convolution in the
plane as described in §3.3.1. Given a function 𝜓 ∈ 𝐿2(𝑀,ℂ), at any point 𝑝 ∈ 𝑀 its
gradient ∇𝜓|𝑝 is an element of 𝑇𝑝𝑀 and is pushed forwarded under a diffeomor-
phism 𝜸 : 𝑀 → 𝑀′ by the differential 𝑑𝜸 |𝑞 : 𝑇𝑞𝑀 → 𝑇𝜸(𝑞)𝑀

′. It follows that we
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can use the direction and magnitude of ∇𝜓|𝑝 to define the values of 𝔗𝜓 and 𝜌𝜓 at
each point 𝑝 ∈ 𝑀 that satisfy the conditions in Equation (4.5). This construction is
formalized in the following claim:
Claim 9 (Construction of operators on surfaces). If 𝔗 and 𝜌 are defined as

𝔗𝜓(𝑝) ≡ sgn∇𝜓|𝑝 and 𝜌𝜓(𝑝) ≡
|︁|︁∇𝜓|𝑝

|︁|︁, (4.10)
then for any function𝜓 ∈ 𝐿2(𝑀,ℂ), filter 𝑓 ∈ 𝐿2(ℂ,ℂ), and diffeomorphism 𝜸 : 𝑀 →

𝑀′, the conditions in Equation (4.5) are satisfied whenever 𝜸 is a local isometry.

Proof. Consider any function 𝜓 ∈ 𝐿2(𝑀,ℂ), point 𝑝 ∈ 𝑀 , and diffeomorphism 𝜸 :

𝑀 → 𝑀′ such that the restriction of 𝜸 to a local neighborhood about 𝑝 is an isometry.
Then, applying the chain rule to the gradient of 𝜸𝜓 ∈ 𝐿2(𝑀′,ℂ) at 𝜸(𝑝) ∈ 𝑀′ gives

∇𝜸𝜓|𝜸(𝑝) =
[︁
𝑑𝜸−1|︁|︁

𝜸(𝑝)
]︁
∇𝜓|𝑝

=
[︁
𝑑𝜸 |𝑝

]︁−1 ∇𝜓|𝑝
(2.20)
= 𝑒−𝑖𝛾𝑝 ∇𝜓|𝑝 . (4.11)

It follows that
𝔗𝜸𝜓( 𝜸(𝑝) )

(4.10)
= sgn ∇𝜸𝜓|𝜸(𝑝)

(4.11)
= 𝑒𝑖𝛾𝑝 ◦ sgn ∇𝜓|𝑝

(4.10)
= 𝑒𝑖𝛾𝑝 ◦ 𝔗𝜓(𝑝)

(2.20)
=

[︁
𝑑𝜸 |𝑝

]︁
◦ 𝔗𝜓(𝑝),

and
𝜌𝜸𝜓( 𝜸(𝑝) )

(4.10)
=

|︁|︁∇𝜸𝜓|𝜸(𝑝) |︁|︁
(2.20)
=

|︁|︁𝑒−𝑖𝛾𝑝 ∇𝜓|𝑝
|︁|︁

=
|︁|︁∇𝜓|𝑝|︁|︁

(4.10)
= 𝜌𝜓(𝑝),

as desired. □
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4.1.2 Optimal filters

Given an arbitrary surface 𝑀 and function 𝜓 ∈ 𝐿2(𝑀,ℝ), we can describe the re-
gion about a point 𝑝 ∈ 𝑀 by computing the filtermaximizing the response of the ex-
tended convolution in exactly the samemanner as described in §3.2.5 for extended
convolution on homogeneous spaces. That is, given a function 𝜓 ∈ 𝐿2(𝑀,ℂ) and
fixing the 𝔗 and 𝜌, at any keypoint 𝑝 ∈ 𝑀 , we can define a map from the space of
filters to the space of extended convolution responses 𝑝.

E𝑝
𝜓

: 𝐿2(ℂ,ℝ) → ℝ

𝑓
(4.3)
↦→ (𝜓 ∗ 𝑓 ) (𝑝)

(4.12)

Applying the Riesz Representation Theorem, it follows that there exist a filter 𝑓
𝜓
𝑝

such that the map in Equation (4.12) can be written in terms of the inner product
on 𝐿2(ℂ,ℝ) with

E𝑝
𝜓
( 𝑓 ) ≡ ⟨ 𝑓 , 𝑓 𝑝

𝜓
⟩, (4.13)

for all 𝑓 ∈ 𝐿2(ℂ,ℝ). It is clear that up to scale, 𝑓 𝑝
𝜓

maximizes the response the ex-
tended convolution 𝑝 and can be evaluated by computing the extended convolution
of 𝜓 with a delta function such that

𝑓
𝑝
𝜓
(𝑥) (4.3)

=

∫
N𝑝

𝜌𝜓(𝑞)
[︁
𝔗𝜓(𝑞) 𝛿𝑥

]︁ (︁
log𝑞 𝑝

)︁
𝑑𝑞. (4.14)

It follows directly from Claim 8 that if 𝔗 and 𝜌 satisfy the conditions in Equa-
tion (4.5), then for any diffeomorphism 𝜸 : 𝑀 → 𝑀′ between surfaces 𝑀 and 𝑀′,

𝑓
𝑝
𝜓
= 𝑓

𝜸(𝑝)
𝜸𝜓

whenever 𝜸 is locally isometric at 𝑝.
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4.2 Field convolution

Up to this point, we have defined extended convolution as an operator on scalar
functions. Here, we generalize extended convolution by combining it with parallel
transport, resulting in a convolutional operator on surface vector fieldswe call field
convolution.

Denoting Γ(𝑇𝑀) as the space of vector fields on 𝑀 , the frame and density oper-
ators take a vector field 𝑋 ∈ Γ(𝑇𝑀) and return a frame field taking values in U(1)

and vector-valued “density” field,
𝔗 : Γ(𝑇𝑀) → 𝐿2(𝑀,U(1))

𝑋 ↦→ 𝔗𝑋

and
𝜌 : Γ(𝑇𝑀) → Γ(𝑇𝑀)

𝑋 ↦→ 𝜌𝑋
. (4.15)

Vector fields 𝑋 ∈ Γ(𝑇𝑀) are convolved with planar filters 𝑓 ∈ 𝐿2(ℂ,ℂ) supported
on the the image of the geodesic 𝜀-ball about each point 𝑝 ∈ 𝑀 – N𝑝 – under the
logarithm map. Formally, the field convolution of a vector field 𝑋 with a filter 𝑓 is
the vector field in 𝑇𝑝𝑀 with

(𝑋 ∗ 𝑓 ) (𝑝) =
∫
N𝑝

P𝑝�𝑞( 𝜌𝑋 (𝑞) )
[︁
𝔗𝑋 (𝑞) 𝑓

]︁
(log𝑞 𝑝) 𝑑𝑞, (4.16)

where P𝑝�𝑞 : 𝑇𝑞𝑀 → 𝑇𝑝𝑀 is the transport operator as defined in Equation (2.14).
For specific choices of 𝔗 and 𝜌, field convolution commutes with isometries in

a manner analogous to extended convolution. In fact, the choices of operators are
somewhat canonical – specifically, we define 𝔗 and 𝜌 such that

𝔗𝑋 (𝑞) ≡ sgn 𝑋 (𝑞) and 𝜌𝑋 (𝑞) ≡ 𝑋 (𝑞). (4.17)
Given points 𝑝, 𝑞 ∈ 𝑀 , we can express the evaluation of a vector field 𝑋 ∈ Γ(𝑇𝑀)

at 𝑝 as
𝑋 (𝑝) ≡ 𝜚𝑝 𝑒

𝑖𝜙𝑝 ∈ 𝑇𝑝𝑀, (4.18)
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and following §2.2.1, the logarithm and transport operators can be written in polar
form as

log𝑝 𝑞
(2.13)
≡ 𝑟𝑝𝑞 𝑒

𝑖𝜃𝑝𝑞 and P𝑝�𝑞(v)
(2.14)
≡ 𝑒𝑖𝜑𝑝𝑞 v,

for all v ∈ 𝑇𝑝𝑀 . Then, for 𝔗 and 𝜌 defined as in Equation (4.17), the field convolu-
tion and of a vector field 𝑋 with a filter 𝑓 can be expressed concretely as

(𝑋 ∗ 𝑓 ) (𝑝) =
∫
N𝑝

𝜚𝑞 𝑒
𝑖 (𝜙𝑝+𝜑𝑝𝑞) 𝑓

(︂
𝑟𝑞𝑝 𝑒

𝑖(𝜃𝑞𝑝−𝜙𝑞)
)︂
𝑑𝑞. (4.19)

Claim 10 (Commutativity of field convolutions). Consider surfaces 𝑀 and 𝑀′ and

any two points 𝑝 ∈ 𝑀 and 𝑝′ ∈ 𝑀′. LetN𝑝 ⊂ 𝑀 andN ′
𝑝′ ⊂ 𝑀′ be 𝜀−balls about the

points and suppose that there exists a diffeomorphism 𝜸 : 𝑀 → 𝑀′ taking 𝑝 to 𝑝′

with 𝜸(N𝑝) = N ′
𝑝′, such that its restriction 𝜸 : N𝑝 → N ′

𝑝′ is an isometry. Then, for

any vector field 𝑋 ∈ Γ(𝑇𝑀) and filter 𝑓 ∈ 𝐿2(ℂ,ℂ), field convolution commutes with

𝜸 at 𝑝 such that [︁
𝑑𝜸 |𝑝

]︁ [︁
(𝑋 ∗ 𝑓 ) (𝑝)

]︁
=

(︂ [︁
𝑑𝜸 |𝑝

]︁
𝑋 ∗ 𝑓

)︂
( 𝜸(𝑝) ). (4.20)

Proof. Consider any vector field 𝑋 ∈ Γ(𝑇𝑀), point 𝑝 ∈ 𝑀 , and diffeomorphism
𝜸 : 𝑀 → 𝑀′ such that the restriction of 𝜸 to a local neighborhoodN𝑝 about 𝑝 is an
isometry. Let 𝑋′ ∈ Γ(𝑇𝑀′) be the push-forward of 𝑋 under 𝑑 𝜸 such that

𝑋′(𝜸(𝑝)) =
[︁
𝑑𝜸 |𝑝

]︁
𝑋 (𝑝) = 𝜚′𝜸(𝑝) 𝑒

𝑖𝜙′
𝜸 (𝑝) .

For any 𝑞 ∈ N𝑝, denoting log𝑞 𝑝 = 𝑟𝑞𝑝 𝑒
𝑖𝜃𝑞𝑝 , and the angle resulting from the paral-

lel transport along the shortest geodesic from 𝑞 to 𝑝 as 𝜑𝑝𝑞, it follows from Equa-
tions (2.20-2.21) that

𝜚′𝜸(𝑞) = 𝜚𝑞

𝑟𝜸(𝑞)𝜸(𝑝) = 𝑟𝑞𝑝

and

and

𝜙′
𝜸(𝑞) = 𝜙𝑞 + 𝛾𝑞,

𝜃𝜸(𝑞)𝜸(𝑝) = 𝜃𝑞𝑝 + 𝛾𝑞,

𝜑𝜸(𝑝)𝜸(𝑞) = 𝜑𝑝𝑞 + 𝛾𝑝 − 𝛾𝑞
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where 𝛾𝑞 is the angle of rotation corresponding to the action of the differential 𝑑𝜸 |𝑞,
taking vectors in𝑇𝑞𝑀 to𝑇𝜸(𝑞)𝑀′. (Recall that as 𝜸 is an isometry, the action of [︁ 𝑑𝜸 |𝑞]
on 𝑇𝑞𝑀 is equivalent to a rotation 𝑒𝑖𝛾𝑞 ∈ U(1) when expressed in the orthonormal
basis for 𝑇𝑞𝑀). Then, we can relate the transport of 𝑋 (𝑞) from 𝑇𝑞𝑀 to 𝑇𝑝𝑀 to that
of 𝑋′(𝜸(𝑞)) from 𝑇𝜸(𝑞)𝑀

′ to 𝑇𝜸(𝑝)𝑀′,
𝜚′𝜸(𝑞) 𝑒

𝑖(𝜙′
𝜸 (𝑞)+𝜑𝜸 (𝑝)𝜸 (𝑞)) = 𝜚𝑞 𝑒

𝑖(𝜙𝑞+𝜑𝑝𝑞+𝛾𝑝) , (4.21)
in addition to the filter argument in the expression of field convolution in Equa-
tions (4.19),

𝑟𝜸(𝑞)𝜸(𝑝) 𝑒
𝑖(𝜃𝜸 (𝑞)𝜸 (𝑝)−𝜙′

𝜸 (𝑞)) = 𝑟𝑞𝑝 𝑒
𝑖(𝜃𝑞𝑝−𝜙𝑞) . (4.22)

It follows that[︁
𝑑𝜸 |𝑝

]︁ [︁
(𝑋 ∗ 𝑓 ) (𝑝)

]︁ (4.19)
=

∫
N𝑝

𝜚𝑞 𝑒
𝑖(𝜙𝑝+𝜑𝑝𝑞+𝛾𝑝) 𝑓

(︂
𝑟𝑞𝑝 𝑒

𝑖(𝜃𝑞𝑝−𝜙𝑞)
)︂
𝑑𝑞

(4.21)
=

∫
N𝑝

𝜚′𝜸(𝑞) 𝑒
𝑖(𝜙′

𝜸 (𝑞)+𝜑𝜸 (𝑞)𝜸 (𝑝)) 𝑓
(︂
𝑟𝑞𝑝 𝑒

𝑖(𝜃𝑞𝑝−𝜙𝑞)
)︂
𝑑𝑞

(4.22)
=

∫
N𝑝

𝜚′𝜸(𝑞) 𝑒
𝑖(𝜙′

𝜸 (𝑞)+𝜑𝜸 (𝑞)𝜸 (𝑝)) 𝑓
(︂
𝑟𝜸(𝑞)𝜸(𝑝) 𝑒

𝑖(𝜃𝜸 (𝑞)𝜸 (𝑝)−𝜙′
𝜸 (𝑞))

)︂
𝑑𝑞

(4.9)
=

∫
N ′

𝜸 (𝑝)

𝜚′𝑞′ 𝑒
𝑖(𝜙′

𝑞′+𝜑𝑞′𝜸 (𝑝)) 𝑓
(︂
𝑟𝑞′𝜸(𝑝) 𝑒

𝑖(𝜃𝑞′𝜸 (𝑝)−𝜙′
𝑞′)

)︂
𝑑𝑞′

(4.19)
=

(︂ [︁
𝑑𝜸 |𝑝

]︁
𝑋 ∗ 𝑓

)︂
( 𝜸(𝑝) ),

where the second to last equality follows from the same change of variables as in
Equation (4.9). □
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Applications
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Chapter 5

ECHO Descriptors

5.1 Introduction

Local feature descriptors play a critical role in both image and shape recognition
applications. Generally, the initial step in such paradigms involves identifying a
number of keypoints on a 2D image or 2D manifold. The purpose of local feature
descriptors is to provide a distinctive characterization of the region surrounding
each keypoint, which can then be compared to establish point-to-point correspon-
dences between images or surfaces. Successful image descriptors, such as SIFT
[Low99, Low04] and SURF [BTVG06, BETVG08], are both highly descriptive, in that
characterizations of different neighborhoods are sufficiently unique so as to differ-
entiate between the two without ambiguity, repeatable, in that descriptions of re-
gions that are fundamentally the same are nearly identical, and robust under nui-
sance parameters including noise and affine transformations. Similarly, popular
surface descriptors, e.g. SHOT [TSDS10a, STDS14] and RoPS [GSB+13], are insensi-
tive to noise, mesh resolution, and rigid transformations.

For both images and surfaces, the majority of successful descriptors rely on a lo-
cal frame to encode the neighborhood about a keypoint. Typically, the construction
of these descriptors consists of first defining a rotationally equivariant frame at the
keypoint and then describing the neighboring region relative to that frame; such ap-
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proaches ensure that the region can be encoded without discarding discriminating
information and that the descriptor is itself rotationally invariant. For shapes, the
use of repeatable and noise-robust local frames significantly improves descriptor
performance [PD11].

Here we present a novel, highly descriptive and robust framework for rotation-
and isometry-invariant image and surface feature descriptors based on the optimal
filters maximizing the response of the extended convolution at a given point (§3.2.5
and §4.1.2). Intuitively, instead of describing the local region relative to the frame at
the feature point, we have all points in a local region describe the feature point rela-
tive to their own frames. Viewing the optimal filters – Equations (3.18) and (4.14) – as
recipes for constructing a characterization of the local region in a histogram by ac-
cumulating the density values into the bins indexed by the position of the keypoint
in the neighbors frame, we call the resulting representations Extended Convolution
Histogram of Orientation (ECHO) descriptors.

5.2 Related work

Image Descriptors

Owing to its high descriptiveness, insensitivity to changes in both illumination and
viewpoint, and remarkable success in a variety of applications, the SIFT descriptor
[Low99, Low04] has distinguished itself as one of the premier image feature descrip-
tors. One of the key contributions of SIFT was the achievement of invariance under
the action of 2D similarity transformations. In the SIFT pipeline, the scale corre-
sponding to an image keypoint is determined by the point’s location in scale-space
and the orientation is determined by the direction of the gradient at the point. The
point’s neighborhood is then encoded relative to the frame corresponding to the
assigned scale and orientation to achieve invariance.
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The success of SIFT has helped to establish the construction of a descriptor rela-
tive to a local reference frame as the de facto standard amongst techniques used to
achieve rotation invariance. Later descriptors built on top of the SIFT framework,
such as GLOH [MS05], sought to increase descriptiveness at the cost of computa-
tional complexity with a specific focus on both improving repeatability and robust-
ness in the assignment of orientations.

Other methods inspired by SIFT, including SURF [BTVG06, BETVG08] and DAISY
[TLF09], produce descriptors of comparable quality while reducing computational
cost; particular care is taken to devise strategies thatminimize the complexity of the
orientation assignment processwithoutmaking large sacrifices in robustness. SURF
itself has become one of themost popular and distinguished descriptors, due in part
to its effectiveness in real-time applications. More recent successful 2D descriptors,
BRISK [LCS11], KAZE [AS11, ABD12] and ORB [RRKB11], also use local frames to
achieve either full or partial similarity invariance.
Surface descriptors

The success of SIFT has helped to establish the construction of a descriptor rela-
tive to a local reference frame as the de facto standard amongst techniques used
to achieve rotation invariance. However, unlike images, surfaces have no inherent
signal to facilitate the construction of frames. To achieve invariance under rigid
transformations, prior surface descriptors defined relative to intrinsic parameter-
izations, such as ISC [KBLB12], have sacrificed descriptive potential. In this con-
text, it is not surprising that surface descriptors able to define frames generally ex-
hibit superior overall descriptor performance [PD11]. Of these descriptors, SHOT
[TSDS10a] RoPS [GSB+13], and USC [TSDS10b] are the most popular, and have been
shown to outperform competing methods in terms of descriptiveness and robust-
ness under a variety of nuisance parameters [STDS14, GBS+16].
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The effectiveness of these descriptors is underpinnedby the construction of frames
based on the surface’s principal curvature directions. Specifically, SHOT, RoPS, and
USC compute a weighted covariance matrix centered at the point of interest. The
eigenvectors of the resulting matrix can be interpreted as a smoothed version of
the principal curvature directions. As long as the principal curvature values are
distinct, a rigid frame can be constructed from the eigenvectors, though it is unique
only up to sign. Each of these descriptors employ techniques to eliminate this am-
biguity so as to produce a single repeatable frame.

A number of contemporaneous learned surface descriptors have been shown
to significantly outperform SHOT and other handcrafted descriptors in certain ap-
plications [KZK17, WGY+18, DBI18, DBI19, SSS19b, CPK19]. However, most of these
methods learn local descriptors fromexistinghandcrafted techniques [KZK17, DBI18],
rather than input data [SSS19b]. More generally, many state-of-the art pipelines
for shape registration and correspondence directly incorporate "deterministic" de-
scriptors such as SHOT in some capacity [VLB+17, LYLG18, DSL+19] and outperform
learned approaches with the proper settings [DSL+19, SSDS19].

5.3 Method overview

Given a point of interest and surrounding neighborhood, our proposed descriptor
corresponds to the filter that maximizes the response of the extended convolution
at the keypoint. On images, rotation-invariant descriptors are computed with re-
spect to the formulation of extended convolution in the plane (§3.21); On surfaces,
we compute isometry-invariant descriptors using the definition of extended con-
volution making use the Riemannian logarithm (§4.1). In both cases, the optimal
filters belong to 𝐿2(ℂ,ℝ) and are rasterized in two-dimensional arrays. Using the
frame and density operators as defined in Equations (3.22) and (3.24) ( resp. Equa-
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tion (4.10) ), the construction is straightforward: Given an image (resp. an intrinsic
signal on the surface), we use the gradients to attach a weighted frame to every
point in the neighborhood. Then, each point casts a vote into the bin centered at
the position of the keypoint as seen from the frame assigned to the point, weighted
by the gradient magnitude.

5.4 ECHO image descriptors

Recall from §3.3.1 that given a function 𝜓 ∈ 𝐿2(ℂ,ℝ), the SE(2)-invariant optimal
filter maximizing response of the planar extended convolution at a point 𝑦 ∈ ℂ,

𝑓
𝑦
𝜓
(𝑥) (3.26)

=

∫
N𝑦

𝜌𝜓(𝑧)
[︁
𝔗𝜓(𝑧) 𝛿𝑥

]︁ (︁
𝑦 − 𝑧) 𝑑𝑧,

with

𝔗𝜓(𝑥)
(3.25)
≡

[︃ sgn∇𝜓|𝑝 0
0 1

]︃
and 𝜌𝜓(𝑥)

(3.25)
≡

|︁|︁∇𝜓|𝑝
|︁|︁, (5.1)

can be viewed as a characterization of𝜓 on the 𝜀-diskN𝑦 about 𝑦. Since translation-
invariance is relatively trivial, we will refer to the optimal filters as being rotation-
invariant, even though they are technically invariant under rotations and transla-
tions.

In what follows it will be helpful to define a coordinate function
𝐶
𝑦
𝔗𝜓

: N𝑦 → ℂ

𝑧 ↦→
[︁
𝔗𝜓(𝑧)

]︁−1( 𝑦 − 𝑧)
(5.2)

takingneighboring points to the position of the keypoint as seen in their own frames,
allowing the optimal filter to be re-expressed as

𝑓
𝑝
𝜓
(𝑥) =

∫
N𝑦

𝜌𝜓(𝑧) 𝛿𝑥
(︁
𝐶
𝑦
𝔗𝜓

(𝑧)
)︁
𝑑𝑧. (5.3)
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𝑦

𝑧1

𝑧2

𝑧3
𝐶
𝑦
𝔗𝜓

(𝑧1)

𝐶
𝑦
𝔗𝜓

(𝑧2)

𝐶
𝑦
𝔗𝜓

(𝑧3)

Figure 5-1. Visualization of the construction of the optimal filter defined in Equa-tion (5.1): A crop from an input image – taken to be 𝜓 – is shown on the left. Thegradients – whose direction and magnitude determine the values of 𝔗𝜓 and 𝜌𝜓 ateach point, the keypoint 𝑦, and neighboring points 𝑧𝑖 are shown in the middle. Thederived filter is shown on the right.
5.4.1 Construction

The construction of the ECHO image descriptor follows from the discretization of
the optimal filter in Equation (5.1). Figure 5-1 shows an example of constructing the
optimal filter (right) for an ‘A’ pattern (left) constructed with respect to the frame
field determined by the gradients (middle). For each point 𝑧 in the vicinity of the
center point 𝑦, the gradient determines both the position of the bin and the weight
of the vote with which 𝑧 contributes to the filter. For example, since the gradient at
𝑧1 is interpreted as the 𝑥-axis of a frame centered at 𝑧1, the position of 𝑦 relative to
this framewill have negative coordinates. The gradient at 𝑧1 has a largemagnitude,
so the point 𝑧1 contributes a large vote to bin 𝐶

𝑦
𝔗𝜓

(𝑧1). The keypoint 𝑦 has positive
coordinates relative to the frame at 𝑧3 but since the gradient is small, it contributes
a lesser vote to bin 𝐶

𝑦
𝔗𝜓

(𝑧3).
Iterating over all points in the neighborhood of the pattern’s center, we obtain

the filter shown on the right. While the filter does not visually resemble the initial
pattern, several properties of the pattern can be identified. For example, since the
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gradients along the outer left and right sides of the ‘A’ tend to be outward facing,
points on these edges cast votes into bins with negative 𝑥-coordinates, correspond-
ing to the two vertical seams on the left side of the filter. Similarly, the gradients
on the inner edges point inwards, producing the small wing-like structures on the
right side of the filter.
Algorithm 1: ECHO Image Descriptor
Input:keypoint 𝑦 ∈ ℂ,frame field 𝔗𝜓 : ℂ → U(1),density 𝜌𝜓 : ℂ → ℝ,support radius 𝜀 ∈ ℝ>0,descriptor radius 𝑛 ∈ ℤ>0,Gaussian deviation 𝜎 ∈ ℝ>0
Output:ECHO descriptor f 𝑦

𝜓
∈ ℝ(2𝑛+1)×(2𝑛+1)

𝛼 = 𝜀 / 𝑛 ⊲ Image to descriptor scale

f 𝑦
𝜓
= 0 (2𝑛+1)×(2𝑛+1) ⊲ Initialize descriptor

∀ 𝑧 ∈ ℂ such that | 𝑦 − 𝑧 | ≤ 𝜀

𝑦𝑧 = 𝛼 · 𝐶 𝑦
𝔗𝜓

(𝑧) ⊲ Position of 𝑦 in the frame of 𝑧

B𝑧 = {𝑥 ∈ ℂ | |𝑥 | ≤ 𝑛 and |𝑥 − 𝑦𝑧 | ≤ 2𝜎}

∀ 𝑥 = 𝑥1 + 𝑖𝑥2 ∈ B𝑧 ⊲ Splat density into vicinity of 𝑦𝑧

f 𝑦
𝜓
(𝑥1, 𝑥2) += 𝜌𝜓(𝑥) · 𝑘 𝑥,𝜎 ( 𝑦𝑧)

Taking 𝜓 to be an image and given a keypoint 𝑦 ∈ ℂ, our goal is to compute a
rasterization of the of the optimal filter in Equation (5.1) on a (2𝑛 + 1) × (2𝑛 + 1)

grid, denoted as f 𝑦
𝜓
∈ ℝ(2𝑛+1)×(2𝑛+1) . Pseudocode for the computation of the discrete

descriptor is shown in Algorithm 1: The image gradients are used to define the
framefield𝔗𝜓 and density 𝜌𝜓 as in Equation (5.1). The support radius, 𝜀, determines
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the size of the descriptor in pixel coordinates. That is, the descriptor encodes the
circular region of radius 𝜀 centered at 𝑦 in the image. Similar to SIFT, the ECHO
descriptor is computed by binning votes on a grid. The descriptor radius is given by
the input parameter 𝑛 and the grid resolution is 2𝑛+1. The lattice is centered at the
origin and corresponds to a histogram consisting of unit-width bins whose centers
are lattice coordinates. The total number of bins in the histogram is (2𝑛 + 1)2.

For each neighboring point 𝑧, we compute 𝑦𝑧 – the position of 𝑦 in the frame
of 𝑧, scaled to the descriptor resolution. To discretize the integral, we replace the
delta function with a compactly supported kernel that approximates a Gaussian
with deviation 𝜎:

𝑘 𝑎,𝜎 (𝑏) =
⎧⎪⎪⎨⎪⎪⎩

exp (︂
− |𝑎−𝑏|2

𝜎2

)︂
|𝑎 − 𝑏| ≤ 2𝜎

0 otherwise . (5.4)
and compute B𝑧 – the set of grid points that fall within a disk of radius 𝑛 of the
origin and whose kernel function supports 𝑦𝑧; for each grid point 𝑥 ∈ B𝑧, we incre-
ment the value of the descriptor at 𝑥 by 𝜌𝜓(𝑧), weighted by the value of the kernel
function centered at 𝑥, evaluated at the position of 𝑦 in the coordinate frame of the
neighbor, 𝑘 𝑥,𝜎 ( 𝑦𝑧).

5.4.2 Evaluation

Wecompare theECHO imagedescriptor against SIFT in the context of featurematch-
ing on a challenging, large-scale dataset. We choose to compare against SIFT for sev-
eral reasons. Foremost, SIFT has stood the test of time. Despite its introduction over
two decades ago, SIFT is arguably the premier detection and description pipeline
and remains widely used across a number of fields, including robotics, vision, and
medical imaging. Competing pipelines have generally emphasized computational
efficiency and have yet to definitively outperform SIFT in terms of discriminative
power and robustness [KPS17, TS18].
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The advent of deep learning in imaging and vision has coincided with the in-
troduction of a number of contemporaneous learned descriptors which have been
shown to significantly outperform SIFT and other traditional methods in certain ap-
plications [MMRM17, HLS18, LSZ+18, ZR19]. However, the performance of learned
descriptors is often domain-dependent and “deterministic" descriptors such as SIFT
can provide either comparable or superior performance in specialized domains
that learned descriptors are not specifically designed to handle [ZFR19]. More gen-
erally, “classical" methods for image alignment and 3D reconstruction, e.g. SIFT +
RANSAC, may still outperform state-of-the-art learned approaches with the proper
settings [SHSP17, JMM+20].

The scope of our contribution is limited to local image descriptors – we do not
consider the related problem of feature detection. The SIFT pipeline integrates both
feature detection and description in the sense that keypoints are chosen based on
the distinctive potential of the surrounding area. As we seek to compare against
the SIFT descriptor directly, we perform two sets of experiments. In the first, we re-
place the SIFT descriptor with ECHO within the SIFT pipeline to compare practical
effectiveness. The goal of the second experiment is to more directly evaluate our
contribution with respect to the design of rotationally invariant descriptors. Specif-
ically, we seek an answer to the following question: By having all points in the local
region encode the keypoint relative to their own frames, do we produce a more ro-
bust and discriminating descriptor than one constructed relative to the keypoint’s
frame?
Comparison regime

In both sets of experiments, we evaluate ECHO and SIFT in the context of descrip-
tormatching using the publicly available photo-tourism dataset associatedwith the
2020 CVPR ImageMatchingWorkshop [JMM+20]. The dataset consists of collections
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of images of international landmarks captured in a wide range of conditions using
different devices. As such, we use the dataset to simultaneously evaluate descrip-
tiveness and robustness. The dataset also includes 3D ground-truth information in
the form of the camera poses and depthmaps corresponding to each image. In all of
our experiments, we use the implementation of SIFT in the OpenCV library [Bra00]
with the default parameters.

Due to the large size of the dataset, we restrict our evaluations to the image pools
corresponding to six landmarks: reichstag, pantheon_exterior, sacre_coeur,
taj_mahal, temple_nara_japan, and westminster_abbey, which we believe re-
flect the diversity of the dataset as a whole. Experiments are performed by eval-
uating the performance of the descriptors in matching a set of scene images to a
smaller set ofmodels.

For each landmark, five model images are chosen and removed from the pool.
These images are picked such that their subjects overlap but differ significantly in
terms of viewpoint and image quality. The scenes are those images in the remainder
of the pool that best match the models.

Specifically, SIFT keypoints are computed for all model in each pool. Keypoints
without a valid depth measure are discarded. For each landmark, images in the
pool are assigned a score based on the number of keypoints that are determined to
correspond to at least one keypoint from the five models originally drawn from the
pool.

Keypoints are considered to be in correspondence if the distance between their
associated 3D points is less than a threshold value 𝜏. For each of the five models,
all pixels with valid depth are projected into 3D using the ground-truth depth maps
and camera poses. These points are used to compute a rough triangulation corre-
sponding to the surface of the landmark. As in [GBS+16], we define the threshold
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(b) Randomly selected keypoints and scaleestimated from ground truth
Figure 5-2. Themean precision-recall curves for the ECHOand SIFT descriptors. Onthe left, the keypoints and corresponding scales are computed in the SIFT pipeline.The three different curves correspond to the average over all scenes using the first200, 500, and 1000 keypoints in each. On the right, keypoints are selected at randomand scale is estimated from the ground truth. The curves are averaged over allscenes using 1000 keypoints in each.
value relative to the area of the image, 𝐴,

𝜏 = 0.005 ·
√︁
𝐴 / 𝜋 . (5.5)

The top 15 images with the highest score from each pool are chosen as the scenes.
The scaling factor in the value of 𝜏 was determined empirically; it provides a good
balance between keypoint distinctiveness and ensuring each scene contributes ap-
proximately 1000 keypoints to the total.
Comparisons within the SIFT pipeline

In our first experiment, we perform comparisons with keypoints selected using the
SIFT keypoint detector to gauge ECHO’s practical effectiveness. For each model, we
compute SIFT keypoints and sort them in descending order by “contrast” [Low04].
Of these, we retain the first 1000 distinct keypoints having a valid depth measure,
preventing models with relatively large numbers of SIFT keypoints from having an
outsize influence in our comparisons.
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For each scene, we compute SIFT keypoints and discard those without valid
depth. Those that remain are sorted by contrast and only the first 1000 distinct
keypoints that match at least one keypoint from the five corresponding models are
retained.

Next, ECHO and SIFT descriptors are computed at each keypoint for both the
models and the scenes. Both descriptors are computed at the location in the Gaus-
sian pyramid assigned to the keypoint in the SIFT pipeline. The support radius, 𝜖, of
the SIFT descriptor is determined by the scale associated with the keypoint in addi-
tion to the number of bins used in the histogram. The ECHO descriptor uses more
bins and we find that it generally exhibits better performance using a support ra-
dius 2.5 times larger that of the corresponding SIFT descriptor.
Comparisons using randomized keypoints

Our second set of experiments are performed in the same manner using the same
collection of models and scenes. The only difference is that the keypoints are se-
lected at random so as to avoid the influence of the SIFT feature detection algorithm
on the results. Specifically, for eachmodel, 1000 keypoints are randomly chosen out
of the collection of points that have a valid depthmeasure. Then, for each scene, we
randomly select keypoints with valid depth and keep only those that correspond to
at least one keypoint from the five associated images in the models. This process is
iterated until 1000 such points are obtained.

We use the ground-truth 3D information to provide an idealized estimation of
the scale. That is, for a keypoint, the associated 3D point is first translated by 2𝜏 in a
direction perpendicular to the camera’s view direction and then projected into the
image plane. For both descriptors, the distance between the 2D keypoint and the
projected offset defines the support radius.
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Matching performance

In both sets of experiments, we evaluate the matching performance of the SIFT
and ECHO descriptors by computing precision-recall curves for all keypoints in
the scenes, an approach that has been demonstrated to be well-suited to this task
[KS04, MS05]. Given a scene keypoint, 𝑦 and corresponding descriptor f 𝑦, all key-
points from across all models are sorted based on the descriptor distance, giving
{𝑧1, . . . , 𝑧 𝑁 } with

∥f 𝑦 − f𝑧 𝑖 ∥ ≤ ∥f 𝑦 − f 𝑧𝑖+1 ∥.

Some keypoints may be assigned multiple descriptors in the SIFT pipeline depend-
ing on the number of peaks in the local orientation histogram. In such cases we use
the minimal distance over all of the keypoint’s descriptors.

Scene and model keypoints are considered to match if they correspond to the
same landmark and the distance between their 3D positions is less than the thresh-
old 𝜏 defined in Equation (5.5). We define M𝑝 to be the set of all model keypoints
that are valid matches with 𝑝. Following [SMKF04], the the precision P𝑝 and recall
R𝑝 assigned to 𝑝 are defined as functions of the top 𝑟 model keypoints:

P𝑝(𝑟) =
|M𝑝 ∩ {𝑧 𝑖}𝑖≤𝑟 |

𝑟
and R𝑝(𝑟) =

|M𝑝 ∩ {𝑧 𝑖}𝑖≤𝑟 |
|M𝑝 |

. (5.6)

5.4.3 Results and discussion

We aggregate the results by computing themean precision and recall across all key-
points in the scenes. For the first set of experiments, we compute three curves for
each descriptor corresponding to the top 200, 500, and 1000 keypoints in each scene
as ranked by contrast. The resulting precision-recall curves are shown in Figure 5-
2a. For the second set, we compute a single mean curve for each descriptor using
all 1000 keypoints in each scene; these are shown in Figure 5-2b.
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SIFT ECHO
Figure 5-3. Relative performance of SIFT and ECHO inmatching randomly selectedkeypoints in two pairs of scene (top) and model (bottom) images: Pairs of corre-sponding scene and model keypoints are grouped together and are visualized asvertical lines between the two images. Lines are colored to show the difference inthe percentage of valid matches found by each descriptor and the thickness givesthe number of corresponding pairs in each group.

Overall we see that ECHO performs better than SIFT in our evaluations, though
the difference is more pronounced when keypoint detection and scale estimation
are decoupled from the SIFT pipeline as in our second set of experiments. In the
former case, the precision of each descriptor decreases as the number of scene key-
points increases. This is not surprising as each successive keypoint added is of lower
quality in terms of potential distinctiveness. Figure 5-3 shows a comparison of the
valid matches found using the SIFT and ECHO descriptors between two pairs of
scene (top) and model (bottom) images in the randomized keypoint paradigm. We
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find that ECHO tends to find slightly more valid matches than SIFT in less challeng-
ing scenarios, as in the case on the left where the scene and model image differ
mainly in terms of a small change in the 3D position of the cameras. However, both
descriptors perform similarly in more challenging scenarios as shown on the right.

We do not argue that the results presented here show that the ECHO descriptor
is superior. Rather, they demonstrate that the ECHO descriptor is distinctive, re-
peatable, and robust in its own right and has the potential to be an effective tool
in challenging image matching scenarios. However, it is important to note that ef-
fective implementations of the ECHO descriptor may come at an increased cost. In
our experiments, we find that ECHO performs best with a descriptor radius of 7,
which translates to a descriptor size of 225 elements, roughly twice the number of
elements in the standard implementation of SIFT.

The run-time of our proof-of-concept implementation of ECHOdoes not compare
favorably to the highly optimized implementation of SIFT in OpenCV. (SIFT runs up
to a factor of ten times faster.) However, both approaches have the same complexity,
requiring similar local voting operations to compute the descriptor, and we believe
that ECHO can be optimized in the future to be more competitive.

5.5 ECHO surface descriptors

Given a function 𝜓 on a surface 𝑀 , recall from §4.1 that the isometry-invariant
optimal filter maximizing the response of the extended convolution on𝑀 at a point
𝑝 ∈ 𝑀 is given by

𝑓
𝑝
𝜓
(𝑥) (4.14)

=

∫
N𝑝

𝜌𝜓(𝑞)
[︁
𝔗𝜓(𝑞) 𝛿𝑥

]︁ (︁
log𝑞 𝑝

)︁
𝑑𝑞,

with

𝔗𝜓(𝑝)
(4.10)
≡ sgn∇𝜓|𝑝 and 𝜌𝜓(𝑝)

(4.10)
≡

|︁|︁∇𝜓|𝑝
|︁|︁.

(5.7)
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Equation (5.7) gives a recipe for constructing a description of the local surface in
the geodesic 𝜀-ball N𝑝 about 𝑝 in the same manner as was done on images in §5.4.
Similarly, it is helpful to define the coordinate function

𝐶
𝑝
𝔗𝜓

: N𝑝 → ℂ

𝑞 ↦→
[︁
𝔗𝜓(𝑝)

]︁−1 log𝑞 𝑝
(5.8)

taking neighboring points on the surface to the position of the keypoint as seen in
their own frames. This allows for the the optimal filter to be re-expressed as

𝑓
𝑝
𝜓
(𝑥) =

∫
N𝑝

𝜌𝜓(𝑞) 𝛿𝑥
(︁
𝐶
𝑝
𝔗𝜓

(𝑞)
)︁
𝑑𝑞. (5.9)

Choosing 𝜓

In constructing planar descriptors, we take 𝜓 to be an image. On surfaces, we as-
sume that all we are given is the surface itself,𝑀 . Since extended convolution (and
by extension the optimal filters) are defined relative to a signal on the domain, we
need to recover a function 𝜓 ∈ 𝐿2(𝑀,ℝ) such that the derived descriptor is both
stable and descriptive.

In our applications, we have found that theHeat Kernel Signature (HKS) [SOG09]
provides a good balance between responsiveness and robustness; it captures sub-
tle changes in the surface and is insensitive to sources of interference commonly
found in mesh representations of surfaces such as noise and tessellation quality. In
addition, the HKS provides a description of the intrinsic properties of the surface,
i.e. it commutes with isometries, ensuring that the proposed descriptor is invariant
under isometric deformations of the surface.
Expressing the keypoint in the frames of its neighbors

The major computational step in the construction of our proposed surface descrip-
tor is evaluating the (Riemannian) logarithm, giving an expression of the keypoint

73



as a point in the tangent spaces of its neighbors. State-of-the-art algorithms for com-
puting the logarithm map parameterize the region about a given point through ap-
proaches based either on heat diffusion [SSC19a, HA19] or on Dijkstra-like traversal
[MR12]. A naive incorporation of one of these methods into our descriptor would
entail computing a parameterization about every point in the support region, which
is obviously undesirable.

To avoid this, we follow [SGW06, Rus10, HA19] and exploit a convenient relation-
ship between the gradient of the geodesic distance function and the logarithmmap.
Setting 𝑑𝑝

𝑔 (𝑞) ≡ 𝑑𝑔 (𝑝, 𝑞) to be the geodesic distance from 𝑝 and using the symmetry
of geodesic distances, the logarithm at 𝑞 and geodesic distance from 𝑝 are related
by

log𝑞 𝑝 = −𝑑𝑝
𝑔 (𝑞) · ∇𝑑

𝑝
𝑔

|︁|︁
𝑞
= −𝑑𝑝

𝑔 (𝑞) ·
(︄
∇𝑑𝑝

𝑔

|︁|︁
𝑞|︁|︁∇𝑑𝑝

𝑔

|︁|︁
𝑞

|︁|︁
)︄
, (5.10)

where the last equation follows from the fact that the the distance function 𝑑
𝑝
𝑔 sat-

isfies the Eikonal equation. Thus we can compute a single (local) geodesic distance
function at 𝑝 and use the distance function 𝑑

𝑝
𝑔 and its gradient to determine the

logarithm of 𝑝 in the tangent spaces of all neighbors 𝑞.
More generally, letting 𝑑 : 𝑀 × 𝑀 → ℝ≥0 denote any distance function on 𝑀 ,

and setting 𝑑𝑝(𝑞) ≡ 𝑑 (𝑝, 𝑞), Equation (5.10) can be used to compute the coordinate
function 𝐶

𝑝
𝜓
(𝑞) giving the position of 𝑝 in the coordinate frame of 𝑞:

𝐶
𝑝
𝔗𝜓

(𝑞) =
[︁
𝔗𝜓(𝑞)

]︁−1 log𝑞 𝑝 = −𝑑𝑝(𝑞) ·
[︁
𝔗𝜓(𝑞)

]︁−1 ·
(︄
∇𝑑𝑝

|︁|︁
𝑞|︁|︁∇𝑑𝑝
|︁|︁
𝑞

|︁|︁
)︄

(5.11)

This gives the feature descriptor a remarkable degree of flexibility in that the dis-
tance function can be treated as an input parameter that is chosen based on its
suitability for the desired application.
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Algorithm 2: ECHO Surface Descriptor
Input:triangle mesh 𝑀 = (V ,T),keypoint 𝑝 ∈ V ,frame field 𝔗𝜓 : T → U(1),density 𝜌𝜓 : V → ℝ,distance map 𝑑𝑝 : V → ℝ≥0,support radius 𝜀 ∈ ℝ>0,descriptor radius 𝑛 ∈ ℤ>0,Gaussian deviation 𝜎 ∈ ℝ>0,quadrature degree 𝑚 ∈ ℤ>0
Output:

ECHO descriptor f𝜓𝑝 ∈ ℝ(2𝑛+1)×(2𝑛+1)

𝛼 = 𝜀 / 𝑛 ⊲ Surface to descriptor scale

f𝜓𝑝 = 0 (2𝑛+1)×(2𝑛+1) ⊲ Initialize descriptor

∀ 𝑡 = (𝑣0, 𝑣1, 𝑣2) ∈ T such that ∃ 𝑖 with 𝑑𝑝(𝑣𝑖) ≤ 𝜀

Q 𝑚
t = QuadratureSamples(𝑚, 𝑡) ⊂ 𝑡 ×ℝ

∀ (𝑞, 𝑤𝑞) ∈ Q 𝑚
𝑡 ⊲ Integrate over the triangle

𝑝𝑞 = 𝛼 · 𝐶𝑝
𝔗𝜓

(𝑞) ⊲ Position of 𝑝 in the frame of 𝑞

B𝑞 = {𝑥 ∈ ℤ2 | |𝑥 | ≤ 𝑛 and |𝑥 − 𝑝𝑞 | ≤ 2𝜎}

∀ 𝑥 = 𝑥1 + 𝑖𝑥2 ∈ B𝑞 ⊲ Splat signal into vicinity of 𝑝𝑞

f𝑝
𝜓
(𝑥1, 𝑥2) += 𝜌𝜓(𝑞) · 𝑤𝑞 · 𝑘 𝑥,𝜎 (𝑝𝑞)
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5.5.1 Construction

We address the computation of the ECHO descriptor with respect to a discrete rep-
resentation of surfaces as triangle meshes, 𝑀 = (V ,T). As is standard, a signal
𝜓 : V → ℝ is represented by its values at the vertices and is extended by linear
interpolation to the interior of triangles. Vector and frame fields are represented
using a constant value per triangle.

Given a vertex 𝑝 ∈ V , our goal is to compute the discretized descriptor f𝜓𝑝 ∈

ℝ(2𝑛+1)×(2𝑛+1) , sampled on a (2𝑛+1) × (2𝑛+1) grid. To do this, we need to discretize
the coordinate function 𝐶

𝑝
𝔗𝜓

, giving the position of the keypoint in the frames of
its neighbors, and the density 𝜌𝜓, and we need to estimate the integral in Equa-
tion (5.9).

To define a discretized coordinate function and density, we need to represent
𝐶
𝑝
𝔗𝜓

and 𝜌𝜓 by their values at vertices. As both functions are defined in terms of the
gradients of scalar function, which are represented as constant values per triangle,
we use area-weighted averaging to define the values at the vertices.

Specifically, letting T𝑞 = {𝑡 ∈ T
|︁|︁ 𝑡 ∋ 𝑞} denote the subset of triangles incident on

𝑞 ∈ V , we define the coordinates of the position of vertex 𝑝 in the tangent space of
vertex 𝑞 (relative to the prescribed fame field) as:

𝐶
𝑝
𝔗𝜓

(𝑞) = −𝑑𝑝(𝑞) ·

∑︁
𝑡∈T𝑞

|𝑡 | ·
[︁
𝔗𝜓(𝑡)

]︁−1 ·
(︃

∇𝑑𝑝
|︁|︁
𝑡|︁|︁∇𝑑𝑝
|︁|︁
𝑡

|︁|︁ )︃|︁|︁|︁|︁|︁|︁∑︁𝑡∈T𝑞 |𝑡 | · [︁𝔗𝜓(𝑡)
]︁−1 ·

(︃
∇𝑑𝑝

|︁|︁
𝑡|︁|︁∇𝑑𝑝
|︁|︁
𝑡

|︁|︁ )︃
|︁|︁|︁|︁|︁|︁
, (5.12)

where |𝑡 | is the area of triangle 𝑡. Similarly, we define the vertex-based signal 𝜌𝜓 :

V → ℝ≥0 by taking the area-weighted average of the magnitudes of the gradients
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adjacent to a vertex 𝑞:

𝜌𝜓(𝑞) =

∑︁
𝑡∈T𝑞

|𝑡 | · | ∇𝜓|𝑡 |∑︁
𝑡∈T𝑞

|𝑡 |
. (5.13)

In discretizing the integral, we replace the delta function with the same com-
pactly supported kernel approximating a Gaussian with deviation 𝜎 as in Equa-
tion (5.4). Then, we approximate the integral over each triangle using 𝑚-th degree
Gaussian quadrature samples [Cow73]. Specifically, setting Q 𝑚

𝑡 ⊂ 𝑡 × ℝ to be the
(finite) set of quadrature points and quadrature weights of degree 𝑚, we approx-
imate the integral over the local neighborhood by first writing it out as a sum of
integrals over the individual triangles of the mesh, and then approximating each
per-triangle integral by a weighted summation over the quadrature samples. Com-
bining the approximations gives:

f𝑝
𝜓
(𝑥1, 𝑥2) =

∫
𝑞∈N𝑝

𝜌𝜓(𝑞) · 𝑘 𝑥,𝜎

(︁
𝐶
𝑝
𝔗𝜓

(𝑞)
)︁
𝑑𝑞

=
∑︁
𝑡∈T

∫
𝑞∈𝑡∩N𝑝

𝜌𝜓(𝑞) · 𝑘 𝑥,𝜎

(︁
𝐶
𝑝
𝔗𝜓

(𝑞)
)︁
𝑑𝑞

≈
∑︁
𝑡∈T

∑︁
{(𝑞, 𝑤𝑞)∈Q 𝑚

𝑡 | 𝑞∈N𝑝}
𝜌𝜓(𝑞) · 𝑤𝑞 · 𝑘 𝑥,𝜎

(︁
𝐶
𝑝
𝔗𝜓

(𝑞)
)︁
.

Pseudocode for the computation of the discrete descriptor is shown in Algo-

rithm 2: we iterate over all triangles 𝑡 ∈ T which have at least one vertex within
a distance of 𝜀 of the keypoint; for each triangle 𝑡, we compute the set of 𝑚-th de-
gree quadrature samples Q 𝑚

𝑡 ; for each quadrature point 𝑞, we compute 𝑝𝑞, the po-
sition of 𝑝 in the coordinate frame of 𝑞, scaled to the descriptor resolution; we also
compute B𝑞 – the set of grid points that fall within a disk of radius 𝑛 of the origin
and whose kernel function supports 𝑝𝑞; for each grid point 𝑥 ∈ B𝑞, we increment
the value of the descriptor at 𝑥 by the value of the density at the quadrature point,
𝜌𝜓(𝑞), weighted by the quadrature weight,𝑤𝑞, and the value of the kernel function
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Input mesh

HKS gradient frame

HKS

Keypoint logarithms

Keypoint distances

Figure 5-4. Visualizations of the input geometry (left), the Heat Kernel Signatureand derived frame field (middle), and the geodesic distances from the keypoint andthe keypoint’s logarithm in its neighbors’ tangent frames (right). For the visualiza-tion of the signals, red corresponds to lower values and blue to larger ones. Framesdefined by the gradients of the HKS are visualized by showing the directions of thepositive 𝑥- and 𝑦-axes. Frames generated from larger magnitude gradients are ren-dered with higher opacity.
centered at 𝑥, evaluated at the position of 𝑝 in the coordinate frame of quadrature
point, 𝑘 𝑥,𝜎 (𝑝𝑞).
Defining the distance

In our implementation, we consider three different distance functions: The geodesic
distance, the diffusion distance [CL06], and the biharmonic distance [LRF10]. To
compute the distance map 𝑑𝑝 it is desirable to choose a method that allows the cal-
culation to be truncated to exclude points whose distance from 𝑝 exceeds 𝜀. Assum-
ing that the set of points in 𝑀 within a distance of 𝜀 of the keypoint 𝑝 is connected,
the truncated distance function can be computed using a flood-fill approach.

For the the diffusion distance and biharmonic distance, the implementation is
straight-forward. (We reuse the spectrum computed for the Heat Kernel Signature.)
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For the geodesic distance, we use the Dijkstra-like implementation in [MR12] origi-
nally proposed in [Rei04]. The authors’ publicly available implementation provides
a fast and accurate approximation of geodesic distances inside a local neighbor-
hood. An example of the computed geodesic distances and derived logarithms is
shown on the right in Figure 5-4.

5.5.2 Evaluation

We compare ECHO against popular surface feature descriptors in the context of
feature matching and sparse shape correspondence. Descriptors are evaluated in
terms of overall descriptiveness and robustness to rigid articulations, near isomet-
ric and non-isometric deformations, Gaussian noise, varyingmesh tessellation, and
topological and geometric changes. We consider the performance of ECHO – using
geodesic, biharmonic [LRF10], and diffusion [CL06] distances – and several descrip-
tors introduced in the last decade: SHOT [TSDS10a, STDS14], RoPS [GSB+13], USC
[TSDS10b], and ISC [KBLB12]. The first three have been shown to be among the
most effective descriptors currently in the literature [GBS+16]. Of these, SHOT has
seenwide adoption in the context of 3D object retrieval, recognition and correspon-
dence [VLB+17, MBM+17, BBL+17]. We include ISC in our comparisons as unlike
SHOT, RoPS, and USC, it, like ECHO, is intrinsic. Moreover, it is similar to ECHO in
that votes are weighted and binned with respect to the HKS and geodesic distances,
though it does not incorporate the use of frame fields.

To perform the evaluations, we use two datasets consisting of triangularmeshes:
the TOSCA dataset [BBK08] and the SHREC 2019 Shape Correspondence with Iso-
metric and Non-Isometric Deformations benchmark dataset [DSL+19]. The former
consists of a set of collections of synthetic humanoid and animal figures in differ-
ent, near-isometric poses; the latter is made up of 3D scans of real-world objects
exhibiting a wide variety of deformations.
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We use the publicly available implementations of SHOT, RoPS, and USC in the
PCL library [RC11] with the default parameters. For ISC, we use our own C++ imple-
mentation based on the Matlab implementationmade available by the authors. We
attempt to remain as faithful as possible to the authors’ original implementation,
though we replace their method for computing geodesics with that used in ECHO.

The size of the support radius 𝜀 depends on the mesh, and is proportional for all
descriptors. Specifically, we follow [ZBH12, GBS+16] and set the support radius for
all keypoints to be

𝜀 = 0.08
√︁
𝐴 /𝜋 , (5.14)

where 𝐴 is the area of themesh. For the biharmonic anddiffusionECHOdescriptors,
𝐴 is computed by first using the distance function to assign lengths to edges and
then using Heron’s Formula to compute the triangle areas from these lengths. All
support regions contain a similar number of vertices.

ECHO descriptors are un-normalized, computed with a descriptor radius of 𝑛 =

5, a Gaussian deviation of 𝜎 = 1.3 /
√︁
− log(0.05), and a quadrature degree of𝑚 = 5

(corresponding to 7 samples within each triangle) [Cow73]. The HKS is computed
once for each mesh as a pre-processing step using the first 200 eigenvalue-vector
pairs of the Laplace-Beltrami operator andwith a diffusion time of 0.1. The spectral
decomposition is reused in the calculation of biharmonic and diffusion distances,
the latter of which is computed with a diffusion time of 0.1. (Models are rescaled
to have unit area prior to computing the spectrum so that the parameters used for
computing the HKS and the diffusion distances are consistent with respect to scal-
ing.) We use the same HKS calculation for both ECHO and ISC, as we find that the
latter sees better performance using our selected parameters than those suggested
by the authors in [BK10]. An example HKS and the corresponding frame field are
shown in Figure 5-4 (middle).
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Figure 5-5. Visualizations of biharmonic ECHO descriptors computed at corre-sponding points on two meshes from the centaur class of the TOSCA dataset[BBK08]. ECHO’s intrinsic construction and use of frame fields enables rich anddistinctive characterizations that remain consistent in the presence of significantlocal deformations. Descriptors are drawn using the HSV scale – hue encodes theabsolute magnitude (ranging from smaller descriptors drawn in red to larger de-scriptors drawn in blue) and value encodes the relative magnitude (darker colorscorrespond to smaller descriptor values). Saturation is fixed at one.
5.5.2.1 Feature Matching

The TOSCAdataset is used to evaluate the descriptors in terms of overall descriptive-
ness and robustness to increasing levels of Gaussian noise and mesh decimation.
Experiments are performed by evaluating the performance of the descriptors in
matching features from a set of scenemeshes to those from a smaller set ofmodels.

Themodelmeshes consist of the nine ‘null’ meshes from each shape class (those
numbered 0 and the gorilla1 mesh). All other meshes in the dataset constitute
the scenes, which are identical to the models up to near-isometric deformations
and share the same triangulations. Examples of biharmonic ECHO descriptors com-
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puted at corresponding points on two scene meshes from the centaur class are
shown in Figure 5-5.

To avoid the influence of keypoint detection algorithms in our experiments, we
randomly generate corresponding points for both the models and the scenes in the
following manner: First, we randomly select 1000 keypoints lying on each model
mesh. Then, for each scene, we randomly select 1000 points that match at least one
keypoint in the corresponding model. A keypoint on a scene is considered to match
a point on a model if the two belong to the same class and if, after mapping the
scene keypoint to the model, the geodesic distance between the two is less than the
1/4 the support radius in Equation (5.14). Then, for each method, descriptors are
computed at all model and scene keypoints.
Descriptiveness

To evaluate descriptiveness, we compute precision-recall curves for each descriptor
at every scene keypoint, in exactly the same manner as was done in evaluation of
the image descriptions. Given a scene keypoint, 𝑝 and corresponding descriptor
f𝑝, all keypoints from across all models are sorted based on the descriptor distance.
Then letting M𝑝 be the set of all model keypoints that are valid matches with 𝑝,
precision and recall are defined as functions of the top 𝑟 model keypoints as in
Equation (5.6).

We note that our definition of a “match” is conservative in that it can exclude
valid correspondences such as matching the right index finger from the michael
model with the right index finger from a victoria scene.) This has the effect of
creating more false negatives, which reduces the overall precision.
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Robustness to Noise

We test the robustness of each method with respect to various levels of Gaussian
noise applied to all meshes in the scenes. Similar to [BBC+10, BBB+11, GBS+16], we
add five levels of Gaussian noise with variances of √︁

𝑖 · 𝜀 / 200, 1 ≤ 𝑖 ≤ 5 to the
vertices of each mesh in the scenes. However, we scale the magnitude of the noise
relative to local edge lengths. Namely, the noise added at a vertex 𝑝 is scaled by
a factor of 𝐸𝑝 / 𝐸 where 𝐸𝑝 is the average length of the edges incident on 𝑝 and 𝐸

is the average length of all edges in the mesh. This process produces five sets of
scenes corresponding to each level of noise; the models are left unchanged. (See
supplementary material for examples.)
Robustness to Varying Mesh Resolution

We also test the sensitivity of each descriptor with respect to changes in mesh res-
olution. Three new sets of scenes are constructed by decimating the original scene
meshes by factors of 2, 4, and 8. Specifically, we use OpenFlipper’s [MK10] incre-
mental mesh decimation module with the decimation priority determined by the
distance to the original mesh.
5.5.2.2 Sparse Correspondences

We use the SHREC 2019 Shape Correspondence Benchmark dataset to evaluate the
quality of eachdescriptor under rigid articulations, near-isometric andnon-isometric
deformations, and topological and geometric changes in a sparse shape correspon-
dence regime. The dataset consists of fiftymeshes constructed from3D scans of real-
world objects; as a byproduct, the real-world scans contain noise, varying trianglu-
lations, occluded geometry and various other sources of interference [DSL+19]. The
dataset contains 76 pre-defined pairs of meshes partitioned into four increasingly
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ECHO

SHOT RoPS USC ISC Biharmonic Geodesic Diffusion
(ms) 20 138 108 55 118 58 132

Table 5-I.Mean descriptor run time over all model keypoints in the feature match-ing experiments. The ‘null’ meshes contain between 5,000 and 53,000 vertices, withan average of approximately 30,000 vertices.
challenging test sets: (1) articulations and rigid deformations, (2) near-isometric
deformations, (3) non-isometric deformations and (4) topological and geometric
changes. The authors provide the dense ground-truth correspondences associated
with each pair.

Experiments are performed such that each type of descriptor is used to compute
sparse correspondences between the two meshes in each pair. Specifically, each
pair is split into a model and a scene mesh, where the former is in a relatively sim-
ple ‘null’ pose and the latter is in a more complex pose. As in the feature matching
experiments, 1000 keypoints lying on the scenemesh are randomly chosen. Descrip-
tors are computed at all scene keypoints and at every vertex on the model mesh.
For a given scene keypoint 𝑝, we follow [CRB+16, LRB+16, DSL+19] and evaluate
the correspondence quality by computing the (area-normalized) geodesic distance
between the ground-truth position of the keypoint on the model mesh, 𝑞∗, and the
model vertex 𝑞 with the smallest descriptor distance,

𝑑𝑔 (𝑞∗, 𝑞)
√︁
𝜋 / 𝐴, (5.15)

where 𝐴 is the total surface area of the model mesh.
5.5.2.3 Complexity

The mean run time for each descriptor over all model keypoints in the feature
matching experiments is shown in Table 5-I. The SHOT descriptor is fastest, fol-
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lowed by the ISC descriptor and the ECHO descriptor computed using geodesic dis-
tances. While slower, we believe that the computational overhead of biharmonic
ECHO descriptor is justified by its effectiveness, as we discuss next.

5.5.3 Results and discussion

Here we discuss the results of our evaluations using the TOSCA and SHREC 2019
Shape Correspondence Benchmark datasets.
5.5.3.1 TOSCA

The results of the featurematching experiments using the TOSCA dataset are shown
in Figure 5-6. The descriptiveness results are aggregated by computing the mean
precision and recall across all keypoints in the scenes. The resulting curves for
each descriptor are shown in Figure 5-6a.

The biharmonic ECHO descriptor achieves the best performance by a significant
margin, followed by SHOT and RoPS, though the difference between the latter is
smaller. Generally speaking, ECHO, SHOT, RoPS and USC have approximately sim-
ilar distinctive potential in the sense that all achieve rotation invariance without
loss of information by incorporating framefields in their construction. The superior
performance of the ECHO descriptor is likely due to the stability of the biharmonic
distance map and the fact that the descriptor is intrinsic and thus fully invariant
to isometric deformations. Like ECHO, the ISC descriptor is also intrinsic, though
its poor performance is likely a consequence of its lower descriptive ceiling as it in-
dependently discards per-frequency and per-radius phase information to achieve
rotation invariance. While the mappings between the TOSCA models meshes and
their correspondingmeshes in the scenes are not perfect isometries, it is clear from
the performance of ECHO that an intrinsic construction confers an advantage pro-
vided it can make use of a frame field.
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Figure 5-6. Results of feature matching evaluations using the TOSCA dataset. Top:Descriptiveness results in the form of themean precision and recall curves for eachdescriptor. Middle and Bottom: Robustness results in the form of the areas underthe mean precision-recall curves as functions of noise and decimation severity.

The feature matching robustness results are expressed by plotting the area un-
der the mean precision-recall curves as a function of nuisance severity. Descrip-
tor performance under increasing levels of Gaussian noise is shown in Figure 5-6b.
The biharmonic ECHO descriptor achieves the best performance at all levels and re-
mains stable relative to the other descriptors in the sense that it sees a proportional
drop in performance at higher levels of noise. The geodesic and diffusion ECHO
descriptors, SHOT, and RoPS all perform similarly and are less effective.
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Figure 5-7. Results of the shape correspondence evaluations on each test set fromthe SHREC 2019 Shape Correspondence Benchmark [DSL+19]. For each descriptor,the percentage of total correspondences is expressed as a function of the normal-ized geodesic error. Both axes are plotted on a square root scale

Descriptormatchingperformance relative to changes inmesh resolution is shown
in Figure 5-6c, again using the area under the mean precision-recall curves. The bi-
harmonic ECHOdescriptor achieves the best performance, followed by the geodesic
and diffusion ECHO descriptors.
5.5.3.2 SHREC ’19 Shape Correspondence Benchmark

The results of the sparse correspondence experiments using the SHREC 2019 Shape
Correspondence Benchmark dataset are shown in Figure 5-7. For each test set, the
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Figure 5-8. Visualizations of sparse correspondenceswith anormalized geodesic er-ror ≤ 0.08 foundby the SHOT (top row) and biharmonic ECHO (bottom row) descrip-tors between two example mesh pairs from the first (left column) and third (rightcolumn) test sets in the SHREC 2019 Shape Correspondence Benchmark dataset.Both SHOT and ECHO perform well in finding correspondences between meshesdiffering by locally rigid articulations (left). However, SHOT’s performance sharplydeteriorates in the presence of complex, non-isometric deformations (right), whileECHO remains relatively stable. .
curve defined by plotting the percentage of the total number of correspondences
for which the (normalized) geodesic distance between the model point with best-
matching descriptor and the ground-truth model point is below a threshold value
is used as an aggregate measure of descriptor correspondence quality. The result-
ing curves for test sets 1, 2, and 3, which correspond to articulated, near-isometric,
and non-isometric shape deformations, are shown in Figures 5-7a, 5-7b, and 5-7c,
plotted on a square root scale.

The biharmonic and geodesic ECHO descriptors achieve the best performance
across the first three test sets, followed by SHOT. In particular, the differences in
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performance between the ECHO descriptors and the other methods on the second
and third test sets, which concern near-isometric and non-isometric deformations,
are especially significant. That ECHO sees little, if any, difference in performance
between the two tests sets is unexpected. While ECHO is isometry invariant, it, like
the other descriptors we consider, is not designed to be stable under non-isometric
surfaces. Despite this, the results suggest that combing an intrinsic construction
with a frame field can still be a powerful approach in the presence of more com-
plex deformations. Examples of sparse correspondences found by the SHOT and
biharmonic ECHO descriptors between mesh pairs from the first and third test sets
are shown in Figure 5-8.

The error curves for test set 4, which considers topological and geometric changes,
are shown in Figure 5-7d. SHOT and RoPS achieve a greater number of correspon-
dences with lower errors, though the biharmonic ECHO descriptor begins to see
more correspondences as the error increases. Here, the relatively poor performance
of the ECHO descriptors might be explained by its use of the HKS, which has demon-
strated instability under topological changes [DSL+19].

Among other sources of interference we do not explicitly consider are matching
and correspondence in the presence of partial shape data. It is not immediately ob-
vious that the ECHO descriptor would struggle to a greater extent than popular ex-
trinsic descriptors like SHOT and RoPS in the presence of occlusions or incomplete
shapes. Regardless, we believe that our evaluations demonstrate that the ECHO de-
scriptor is more informative than state-of-the-art methods and remains so under
significant noise, changes in mesh resolution, complex deformations, and in the
presence of a variety of challenging nuisance factors commonly found in real data.
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5.5.3.3 Discussion

The local shape descriptor we compute at the point 𝑝 can be viewed as a specific
instance of a more general family of descriptors. To this end consider two intrinsic
functions on a surface, 𝑑𝑝 and 𝜓, and from the latter derive and an intrinsic frame
field 𝔗𝜓 and density 𝜌𝜓. Here 𝑑𝑝 should depend on the point 𝑝 being described.
We define a histogram characterizing the point 𝑝 by aggregating information from
neighboring points 𝑞. Each point 𝑞 contributes a vote with weight 𝜌𝜓(𝑞) into the
bin describing the position of 𝑝 relative to 𝑞. Expressing the position in polar coor-
dinates, the radius is given by 𝑑𝑝(𝑞) and the angle is defined to be the direction of
the tangent vector ∇𝑑𝑝

|︁|︁
𝑞
in the frame of 𝔗𝜓.

Here we consider several choices of 𝑑𝑝 including geodesic, diffusion, and bihar-
monic distances from 𝑝, with𝜓 taken to be theHeat Kernel Signature. The improved
performance with the use of the biharmonic distance becomes clear as the bihar-
monic distance is more stable in the presence of noise than the geodesic distance.
The motivation for using the HKS is also exposed. The feature points of a shape are
usually local extrema of the HKS, leading to an anisotropic distribution of weights
in the histogram which produces a more discriminating characterization. (Alter-
native choices for 𝜓 could include locally averaged Gaussian curvature, which is
qualitatively similar to the HKS for small time-steps but does not require a spectral
decomposition, or the Average Geodesic Distance Function [ZMT05].)

One could, of course, consider other choices of 𝑑𝑝, 𝜌𝜓, and 𝔗𝜓 so long as the
latter two maps satisfy the equivariance conditions in Equation (4.5). In particular,
we require that 𝜌𝜓 = 0 whenever 𝔗𝜓 vanishes so that the descriptor remains well-
defined even when the angular component of the polar coordinates of 𝑝 relative to
𝑞 is not.

Finally, we note that this work focuses on the evaluation of the ECHO descriptor
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as a stand-alone characterization of local geometry. A natural extension of thiswork
is to incorporate the ECHO descriptor within a non-rigid registration pipeline, akin
to the way in which SHOT is used to either initialize [LYLG18, DSL+19] or regularize
[VLB+17] the registration process.

5.6 Conclusion

In this chapter we proposed a novel family of local image and surface descriptors,
which correspond to rasterizations of the optimal filter maximizing the response
of the extended convolution. We evaluated the performance of our proposed de-
scriptors against that of the premier image and surface descriptors. The ECHO and
SIFT image descriptors achieve comparable performance on a challenging, large-
scale image dataset. Using biharmonic distances, the ECHO surface descriptor sig-
nificantly outperforms the SHOT, RoPS, USC, and ISC descriptors in terms of overall
descriptiveness and remains more distinctive under significant levels of Gaussian
noise, changes in tessellation quality, and complex deformations.
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Chapter 6

Field Convolutions for Surface CNNs

6.1 Introduction

The advent of deep learning in imaging, vision, and graphics has coincided with
the development of numerous techniques for the analysis and processing of curved
surfaces based on convolutional neural networks (CNNs). The challenge in repro-
ducing the success of CNNs on surfaces is that classical notions of convolution and
correlation in Euclidean spaces cannot simply be transposed onto curved domains.
Unlike images, points on a surface have no canonical orientation, without which
simple operations fundamental to the spatial propagation of information, such as
moving dot products, cannot be computed in a repeatable manner.

Geometric deep learning is a young field, and many successful methods can be
broadly categorized in relation to two emerging paradigms characterized by spe-
cific approaches to convolution: diffusive propagation and equivariant propagation.
Diffusive approaches closely intertwine convolution operations with heat diffusion
on manifolds wherein filters represented by anisotropic heat kernels or Gaussians
areused to propagate scalar features [MBBV15, BMR+16, BMRB16,MBM+17, LLHL20,
SACO20]. In contrast, equivariant convolutions distribute tensor features that trans-
form with local coordinate systems [PO18, TSK+18, SDL18, CWKW19a, dHWCW20,
WEH20, YLP+20].
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Figure 6-1. Prior approaches define patch-based convolution operators as gather-
ing operations (left), which are sensitive to noise or disruptions in the local coordi-nate system. Field convolution is a scattering operation and is robust under pertur-bations as it does not rely on a single coordinate system to aggregate features.

Critically, virtually all state-of-the-art approaches sacrifice filter descriptiveness
to define a notion of convolution that does not depend on the choice of local coor-
dinate frames. Gaussian filters can facilitate efficient evaluations in the spectral
domain but are individually undiscriminating. Equivariant approaches have the
potential to provide expressive notions of convolution on surfaces due to the encod-
ing of geometric information in the transport of tangent vector features. However,
equivariance of the response is almost universally achieved by placing constraints
on the filters themselves [PO18, PRPO19, CWKW19b, dHWCW20, HJZS20, WEH20],
limiting descriptiveness and necessitating complex architectures to support the al-
gebraic relationships between kernels. Furthermore, these regimes formulate spa-
tial propagation as a gathering operation, analogous to correlations on Euclidean
domains; features are weighted based on their position relative to a coordinate
frame defined at a single point (Figure 6-1, left), making them sensitive to incon-
sistencies or disruptions in local parameterizations.

Field convolution (§4.2) generalizes extended convolution on surfaces to an op-
erator on vector fields well-suited for CNNs on surfaces. Features are combined
by having each neighbor 𝑞 parameterize 𝑝 within its own coordinate frame (Fig-
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ure 6-1, right). This formulation combines intrinsic spatial weighting with parallel
transport while placing no constraints on the filters themselves, providing a defini-
tion of convolution that commutes with the action of isometries (Claim 10) and has
increased descriptive potential. In addition, as a scattering operation, it is less sen-
sitive to noise and other nuisance factors as it does not rely on a single coordinate
system about each point to aggregate features.

Field convolutions are flexible and straight-forward to incorporate into surface
learning frameworks. Parallel transport captures additional geometric information
and and their highly discriminating nature has cascading effects throughout the
learning pipeline, allowing us to achieve state-of-the-art results on standard bench-
marks in applications including shape classification, segmentation, correspondence,
and sparse matching.
All code and evaluations are publicly available at github.com/twmitchel/FieldConv.

6.2 Related work

Thefield of geometric deep learning has grown extensively since its inception. Here,
we only review the techniques most closely related to ours – those designed specif-
ically for the analysis of 3D shapes. Generally speaking, these methods exist on a
spectrum between extrinsic and intrinsic techniques, with the former performing
signal processing using the embedding of the surface in 3D and the latter only using
the Riemannian structure.

Point-basedmethods offer a purely extrinsic framework for applying deep learn-
ing to 3D shapes by representing them in terms of point clouds. A majority of
these approaches can trace their lineage to the influential PointNet [QSMG17] and
PointNet++ architectures [QYSG17] and recent approaches such asDGCNN [WSL+19],
PCNN [AML18], KPCNN [TQD+19], TFN [TSK+18], QEC [ZBL+20] and SPHNet [PRPO19]
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have sought to extend the framework by incorporating connectivity information,
dynamic filter parameterizations, and equivariance to rigid transformations. Con-
volution is typically expressed by applying radially isotropic filters over local 3D
neighborhoods and aggregating the results with the maximum or summation oper-
ations. This approach offers a simple foundation for extremely flexible and noise-
robust networks, though at the expense of descriptive potential. More generally,
these methods tend to struggle in the presence of non-rigid isometric deformations,
making them less effective in scenarios like deformable shape matching [DSO20,
GFK+18, SACO20].

Representational approaches sit between extrinsic and intrinsic techniques. These
methods exploit the data’s underlying connectivity to form convolutional operators,
often making use of well-developed techniques for graph-based learning on irreg-
ular structures [DBV16, YSGG17, VBV18, FELWM18, LMBB18, GCBZ19, CWKW19b,
LT20]. In particular, convolutions are performed using filters defined relative to the
explicit graph structure as functions on edges or vertices, oftenwith only immediate
local support such as the surrounding one-ring. A particularly notable example is
MeshCNN [HHF+19], which specifically leverages the ubiquitous representation of
surfaces as trianglemeshes to construct a similarity-invariant convolution operator
propagating edge-based features. While this enables graph-based convolutions to
better handle non-rigid deformations compared to point-based approaches, it also
makes them sensitive to changes in connectivity.

One approach to defining intrinsic convolution has been to parametrize the sur-
face over a simple domain such as the the sphere [HSBH+19], torus [MGA+17], or
plane [SBR16] where standard CNNs can be applied. However, such parameteriza-
tions depend on the genus and often exhibit significant distortion.

A second class of approaches has been to define intrinsic convolution over the
Riemannian manifold, and can generally be classified in relation to two emerging
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paradigms: diffusive convolutions and equivariant convolutions. In the former, con-
volution operations are closely related to heat diffusion on surfaces wherein heat
(e.g. Gaussian) kernels are used to propagate scalar features. While early diffu-
sive approaches including GCNN [MBBV15], ADD [BMRB16], ACNN [BMR+16] and
MoNet [MBM+17] perform convolutions over local patches, recent state-of-the-art
networks ACSCNN [LLHL20] and DiffusionNet [SACO20] represent convolution in
the spectral domain. Despite their success in a variety of scenarios, most notably
in dense shape correspondence [GFK+18, DSO20, LLHL20, SACO20], these methods
face an intractable problem: radially symmetric filters are individually undiscrimi-
nating and diffusive frameworks are not naturally suited to handle the orientation
ambiguity problem introduced by the use of more descriptive, anisotropic kernels.
To compensate, thesemethods supplement convolutionswith basic orientation-aware
operations on tangent vector features [SACO20] in addition to employing various
strategies that are either fragile, such as aligning kernels along the directions of
principal curvature [BMR+16, MBM+17], or discarding information by pooling over
samplings of orientations or by specifying directions ofmaximumactivation[MBBV15,
LLHL20].

Recently, several techniques have been introduced for equivariant surface con-
volutions such asMDGCNN [PO18], GCN [CWKW19a, dHWCW20] andHSN [WEH20].
In contrast to diffusive approaches, equivariant convolutions are designed specifi-
cally to address the rotation ambiguity problem by propagating tangent vector fea-
tures that transform with local coordinate systems. To make the convolution in-
dependent of the choice of local coordinate frame, most existing methods strongly
constrain the class of filters that can be used [PO18, PRPO19, CWKW19b, dHWCW20,
HJZS20, WEH20]. An exception to this is PFCNN [YLP+20] which also discards infor-
mation by pooling over multiple kernel orientations. Often, these parameteriza-
tions are so restrictive that they necessitate complex network architectures to be
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effective: even the state-of-the-art HSN [WEH20] is formulated as a multi-stream U-
Netwith various pooling operations. Furthermore, inmoving fromradially isotropic
to anisotropic filters, prior equivariant regimes universally formulate spatial propa-
gation as a gathering operationwherein all features in the local surface areweighted
based on their position in a single coordinate system. While this approach may
seem natural as it is analogous to correlation on Euclidean domains, a feature’s de-
pendence on a single local parameterization increases sensitivity to noise.

6.3 Method overview

Field convolutions facilitate the construction of highly discriminating yet simple net-
works, without the need for pooling, normalization, or specialized architecture. We
first discuss the discretization of field convolution as defined in Equation (4.19), rel-
ative to surfaces represented as triangle meshes. The principal module in applica-
tions is the field convolution ResNet (FCResNet) block, consisting of two successive
field convolutions with a residual connection between the input and output layers
[HZRS16]. FCResNet blocks are self-contained and flexible, and can easily be incor-
porated into isometry-invariant surface learning regimes. In addition, we lever-
age the connection between field convolutions and ECHO descriptors to construct
a novel final layer specifically designed for labeling tasks with isometry-invariant
surface networks, which we refer to as an ECHO block. This block takes vector field
channels as input, mapping them to scalar ECHO descriptors which are then fed
through an MLP to make predictions, essentially converting the problem to one of
image classification in the final layer of the network.
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6.4 Discretization

Given a surface 𝑀 , recall from §4.2 that we can express the evaluation of a vector
field 𝑋 ∈ Γ(𝑇𝑀) at 𝑝 as the complex number

𝑋 (𝑝) ≡ 𝜚𝑝 𝑒
𝑖𝜙𝑝 ∈ 𝑇𝑝𝑀,

and that the logarithm and transport operators can be written in polar form as
log𝑝 𝑞

(2.13)
≡ 𝑟𝑝𝑞 𝑒

𝑖𝜃𝑝𝑞 and P𝑝�𝑞(v)
(2.14)
≡ 𝑒𝑖𝜑𝑝𝑞 v,

for all 𝑞 ∈ 𝑀 and v ∈ 𝑇𝑝𝑀 . Then, the field convolution of a vector field 𝑋 with a
compactly-supported planar filter 𝑓 ∈ 𝐿2(ℂ,ℂ) can be expressed concretely as the
vector field in Γ(𝑇𝑀) with

(𝑋 ∗ 𝑓 ) (𝑝) (4.19)
=

∫
N𝑝

𝜚𝑞 𝑒
𝑖 (𝜙𝑝+𝜑𝑝𝑞) 𝑓

(︂
𝑟𝑞𝑝 𝑒

𝑖(𝜃𝑞𝑝−𝜙𝑞)
)︂
𝑑𝑞.

whereN𝑝 ⊂ 𝑀 denotes the geodesic 𝜀-ball about 𝑝.
In practice, we discretize a surface 𝑀 by a triangle mesh with verticesV . To ev-

ery 𝑝 ∈ V , we associate the collection of verticesN𝑝 ⊂ V belonging to the geodesic
𝜀-ball about 𝑝. At each point, real-valued filters 𝑓 ∈ 𝐿2(ℂ,ℝ) are supported on
log𝑝

(︁
N𝑝

)︁
⊂ ℂ, and parameterized as sums of angular frequencies with band-limit

𝐵. That is, for any 𝑧 = 𝑟𝑒𝑖𝜃 ∈ ℂ with |𝑟 | ≤ 𝜀, the evaluation of 𝑓 at 𝑧 is expressed as

𝑓 (𝑧) =
𝐵∑︁

𝑚=−𝐵
𝑓𝑚(𝑟) · 𝑒𝑖𝑚𝜃 (6.1)

where 𝑓𝑚(𝑟) ∈ ℂ is the 𝑚-th Fourier coefficient of 𝑓 , restricted to radius 𝑟 and
𝑓−𝑚(𝑟) = 𝑓𝑚(𝑟) because 𝑓 is real-valued. We discretize the function 𝑓𝑚(𝑟) using
linear interpolation, setting 𝑓𝑚(𝑟) = r⊤(𝑟) f𝑚, where r(𝑟) ∈ ℝ𝑁 is the vector of linear
interpolation weights (with r𝑖 (𝑟) ≠ 0 only if 𝑖 ∈ {⌊𝑟𝑁/𝜖⌋, ⌈𝑟𝑁/𝜖⌉}) and f𝑚 ∈ ℂ𝑁 is
the vector of Fourier coefficients at the discrete radii.
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X ∗ f C X ∗ f + C
X

Figure 6-2. The FCResNet block. Hereℂ denotes the complex ReLU in Equation (6.6).

Then, letting {𝑤𝑝} ⊂ ℝ>0 denote the areaweights associatedwith vertices 𝑝 ∈ V

and letting 𝑋 ∈ ℂ|𝑉 | be a discrete vector field, the evaluation of the field convolution
𝑋 ∗ 𝑓 at a vertex 𝑝 ∈ V is given by(︁

𝑋 ∗ 𝑓
)︁
(𝑝) =

∑︁
𝑞∈N𝑝

|𝑚|≤𝐵

𝑤𝑞 𝜚𝑞 𝑒
𝑖 (𝜙𝑞+𝜑𝑝𝑞) 𝑓𝑚(𝑟𝑞𝑝) 𝑒𝑖𝑚(𝜃𝑞𝑝−𝜙𝑞) . (6.2)

The values of 𝑤𝑞, 𝜑𝑝𝑞, 𝑟𝑞𝑝, and 𝜃𝑞𝑝, corresponding to the weight, transport change
of angle, geodesic distance, and logarithm for each 𝑝 ∈ V and 𝑞 ∈ N𝑝 can be
precomputed to speed up training. Similar to [WEH20], we apply rotational offsets
𝑒𝑖sgn(𝑚)𝛽 |𝑚 | to the coefficients corresponding to each frequency, providing additional
learned degrees of freedom.

6.5 Surface CNNs with field convolutions

The goal of this section is to introduce the fundamental building blocks for incorpo-
rating field convolutions into isometry-invariant surface learning paradigms.
FCResNet Blocks

The atomic unit for field convolutions in surface CNN frameworks is the FCResNet
block, which consists of two field convolutions each followed by a non-linearity and
a residual connection between the input and output streams (Figure 6-2). They are
entirely self-contained, and map vector field features to vector field features with-
out relying on any supporting or complementary convolution operations that are
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a common fixture in other equivariant approaches [PO18, WEH20]. As such, they
represent a flexible and descriptive layer that can be easily employed in isometry-
invariant learning pipelines.
Learned gradients

In practice, inputs to surface CNNs are often scalar features, such as the raw 3D
positions of points. To lift such features to a vector field, we use a learnable opera-
tion analogous to a weighted gradient calculation. For any function 𝜓 ∈ 𝐿2(V ,ℝ)

we learn the magnitude and direction of its “gradient" separately, with respect to
compactly supported radially isotropic filters 𝑓1, 𝑓2 ∈ 𝐿2(ℝ≥0,ℝ). That is, we learn
the vector field Φ 𝑓1 : V → ℂ and scalar field 𝑃 𝑓2 : V → ℝ with

Φ 𝑓1 (𝑝) = 𝑒𝑖𝛽
∑︁
𝑞∈N𝑝

𝑤𝑞 (𝜓(𝑞) − 𝜓(𝑝)) 𝑓1(𝑟𝑝𝑞) 𝑒𝑖𝜃𝑝𝑞 , (6.3)
𝑃 𝑓2 (𝑝) =

∑︁
𝑞∈N𝑝

𝑤𝑞 𝜓(𝑞) 𝑓2(𝑟𝑝𝑞) (6.4)

with 𝑤𝑞, 𝑟𝑝𝑞, 𝜃𝑝𝑞 defined as in Equation (6.2) and 𝛽 a learnable rotational offset.
Using these, we define the “gradient” of 𝜓 with respect to 𝑓1 and 𝑓2 as the vector
field

𝑃2
𝑓2
(𝑝)

Φ 𝑓1 (𝑝)∥︁∥︁Φ 𝑓1 (𝑝)
∥︁∥︁ (6.5)

ECHO Blocks

A secondary contribution of this work is the concept of an ECHO block for label-
prediction tasks, which leverages the connectionbetweenvector fields and theECHO
surface descriptor. Given a scalar signal and a frame field, ECHO descriptors pro-
vide an intrinsic, isometry-invariant characterization of the local surface about a
feature point. A vector field can be used to compute ECHO descriptors at every
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point 𝑝 ∈ 𝑀 , using the magnitude and direction of each vector to define the values
of the density and frame field at 𝑝.

The idea behind ECHO blocks is to convert feature vector fields to pointwise de-
scriptors, turning the task of vector field classification into one of image classifica-
tion in the final layer of the network. These blocks consist of two steps: 1) A field
convolution layer is used to map the input feature channels to 𝐷 output feature
channels (with 𝐷 the desired number of descriptors). These are then used to com-
pute pointwise ECHO descriptors, resulting in 𝐻 isometry-invariant scalar features
per channel, where 𝐻 is the number of samples used to represent the ECHO de-
scriptor. 2) The 𝐷 × 𝐻 values are linearized and fed to a three-layer MLP. Here,
we construct ECHO descriptors by splatting the contributions of individual vertices
into the histogram, rather than integrating over individual triangles in the manner
described in §5.5.1. The computation relies only on the logarithm map and the in-
tegration weights associated with each vertex, so no additional pre-processing is
required.
Linearities and Non-Linearities

Since we represent tangent vector features as complex numbers, we apply linear-
ities in the form of multiplication by complex matrices in the same manner as is
done for real-valued features. However, our linearities do not include translational
offsets to preserve commutativity with the action of isometries.

For similar reasons, non-linearities are applied only to the radial components of
features as is done in [WEH20]. Namely, given a feature vector field 𝑋 ∈ ℂ|𝑉 | we
apply pointwise ReLUs with a learned offset 𝑏 such that

ReLU𝑏

(︁
𝑋 (𝑝)

)︁
= ReLU

(︁
𝜚𝑝 + 𝑏

)︁
𝑒𝑖𝜙𝑝 . (6.6)
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FCNet: A Generic Surface CNN for Vector Fields

In our experiments we use a simple, generalizable architecture we call an FCNet,
which is simply a series of FCResNet blocks. For labeling tasks, we append an ECHO
block to the end of the network to make predictions. For FCNets consisting of three
or more layers, we add additional residual connections after every two FCResNet
blocks as we find this significantly accelerates training. In all experiments, we take
the raw 3D positions of points as inputs and use a learnable gradient layer to map
them to vector fields which are then fed to the network. We could also use the in-
trinsic Heat Kernel Signature [SOG09] as input, thereby obtaining a fully isometry-
invariant pipeline. However, as demonstrated by Sharp et al. [SACO20], the 3D co-
ordinates work as well in practice and are easier to compute.

Despite this elementary construction, we show that FCNets achieve state-of-the-
art results in a variety of fundamental geometry processing tasks.

6.6 Evaluation

We compare ourmethod against leading surface learning paradigms on four bench-
marks corresponding to fundamental tasks in geometry processing: classification,
segmentation, correspondence, and feature matching.

6.6.1 Implementation

Our framework is implemented using PyTorch Geometric [FL19]. We employ the
same, simple FCNet architecture discussed in Section 6.5 in all of our experiments,
varying thenumber of FCResNet blocks based on task complexity. For label-prediction
tasks on large datasets, we append an ECHOblock to the end of the network tomake
predictions. Otherwise we use the magnitudes of the output feature vectors.
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Method Accuracy
FC (ours) 99.2%DiffusionNet [SACO20] 98.9%MeshWalker [LT20] 97.1%HSN [WEH20] 96.1%MeshCNN [HHF+19] 91.0%GWCNN [ESKBC17] 90.3%

Table 6-I. Classification accuracy on the SHREC ’11 Dataset [LGB+11] .
As input, we take the 3D coordinates, which are lifted to 16 tangent vector fea-

tures in the initial gradient layer, followed by either 32 or 48 features in the FCRes-
Net stream. We use the ADAM optimizer [KB15] to a cross-entropy loss with an
initial learning rate of 0.01 and a batch size of 1. We randomly rotate all inputs to
ensure there are no consistencies in the spatial embedding of shapes.

Our pre-processing regimeparallels [WEH20], omitting the operations necessary
to support their multi-scale and pooling operations. All shapes are normalized to
have unit surface area and we use the Vector Heat Method [SSC19b] to compute
the geodesic 𝜀-ball N𝑝 ⊂ V corresponding to each vertex 𝑝 ∈ V , in addition to
the logarithm and parallel transport associated with each edge (𝑝, 𝑞) ∈ {𝑝} × N𝑝.
Area weights are assigned in the standard way, using one third of the vertex’s one-
ring area, and are normalized by the sum of the weights within the geodesic 𝜖-ball.
Whilewe process shapes as trianglemeshes in our experiments, we note that recent
work by Sharp et al. [SC20] hasmade possible efficient computations of logarithmic
parameterizations and vector transport on point clouds, with which our method
can be extended to analyze point cloud shape data.

6.6.2 Classification

First, we use an FCNet with two FCResNet blocks to classifymeshes in the SHREC ’11
dataset [LGB+11], containing 30 shape categories. Filters are supported on geodesic
neighborhoods of radius 𝜖 = 0.2 and are parameterized using 𝑁 = 6 radial samples
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Method # Features Accuracy
FC (ours) 3 92.9%MeshWalker [LT20] NA 92.7%MeshCNN [HHF+19] 5 92.3%DiffusionNet [SACO20] 16 91.5%HSN [WEH20] 3 91.1%SNGC [HSBH+19] 3 91.0%PointNet++ [QSMG17] 3 90.8%

Table 6-II. Segmentation accuracy on the composite dataset of [MGA+17].
with band-limit 𝐵 = 2. Due to the small scale of the task, we omit the ECHO block
in the final layer and instead use a global mean pool over the feature magnitudes
to give a prediction. As in prior works [HHF+19, WEH20, SACO20], we train on 10
samples per class and report results over three random samplings of the training
data. Our FCNet converges quickly, and we train on just 30 epochs – far fewer than
the 100 or more used in previous work.

Results are shown in Table 6-I. Due to the wide adoption of the dataset, we only
list the results of methods achieving a classification accuracy of 90% or higher. Our
simple FCNet achieves the highest reported accuracy, reaching a classification rate
of 100% on two of the three random samplings of the training data. Like HSN
and DiffusionNet who also report high classification accuracy, our FCNet uses rel-
atively few parameters compared to other networks and is agnostic to both mesh
connectivity and isometric deformations – all providing a significant advantage on
the SHREC ’11 dataset which has a small number of training samples and consists
of poor-quality meshes with in-class deformations mainly limited to rigid articula-
tions. The superior performance of our FCNet is likely due to the descriptiveness of
field convolutions, as HSN uses specially parameterized filters.
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Figure 6-3. We visualize the descriptors computed in our FCNet’s ECHO block inthe segmentation task. Left: Models from the test split of the composite dataset[MGA+17], color-coded by ground-truth labels. Right: 2D projections of the descrip-tors using t-SNE [VdMH08].
6.6.3 Segmentation

Next, we apply our field convolution framework to the task of human body seg-
mentation, using the dataset proposed by [MGA+17], which consists of a composite
of various human shape datasets [Ado16, ASK+05, GBP07, VBMP08, BRLB14]. The
varied nature of the collection of models in terms of human subjects, acquisition
method, and connectivity serve to test both descriptiveness and robustness to vari-
ety of nuisance factors.

We use an FCNet with four successive FCResNet blocks (𝑁 = 6, 𝐵 = 2, 𝜖 = 0.2)

followed by an ECHO block, trained to predict a body part annotation for each point
on the mesh. The ECHO block computes 𝐷 = 32 descriptors with 𝐻 = 33 sam-
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ples (corresponding to three samples per geodesic radius) for a total of 1056 scalar
feature channels. The three-layer MLP first maps these features to 256 channels,
then 124, and finally to the desired number of output channels. Due to the large
number of vertices per model, we downsample each mesh to 1024 vertices using
farthest point sampling, an approach also used by [HHF+19, WEH20]. Our network
converges quickly and we train for only 15 epochs with a label smoothing regular-
ization [SVI+16] factor of 0.2.

Results in the form of the percentage of correctly classified vertices across all
test shapes are shown in Table 6-II. As in the classification experiments, we only
list the results of methods that achieve a segmentation accuracy of 90% or higher
on the dataset. Again, our basic network achieves state-of-the-art results, outper-
forming all other methods with a minimal number of input features. The improve-
ment due to field convolutions is especially evident relative to other techniques that
employ surface convolutions, such as HSN [WEH20] and DiffusionNet [SACO20] ap-
proaches.

To understand the features learned by our network, we use t-SNE [VdMH08,
PVG+11] to visualize the descriptors computed in the ECHO block for all models in
the test dataset, color-coded using the ground-truth labels (Figure 6-3). We observe
a distinct clustering of points, not only corresponding to similarly labeled regions
but also reflecting the connectivity between adjacent regions on the meshes. This
suggests that our FCNet is able to learn at least some measure of intrinsic similari-
ties between shapes, despite starting with the extrinsic 3D coordinates as input.

6.6.4 Correspondence

Here we use an FCNet to find pointwise correspondences between similar shapes.
Over the last half-decade, the FAUST dataset [BRLB14] has become the de facto stan-
dard for evaluating network performance in correspondence tasks and many re-
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Figure 6-4. FCNet features at corresponding points on models in the remeshedFAUST dataset [DSO20]. Features are drawn using the HSV scale – hue encodes theabsolutemagnitude and value encodes the relativemagnitudewith saturation fixedat one.
cent approaches have achieved near-perfect accuracy on the dataset [FELWM18,
dHWCW20, LLHL20]. However, shapes in the dataset share the same connectiv-
ity, and there has been some question as to whether these methods have primarily
learned the mesh graph structure, rather than deformation-invariant characteriza-
tions of the shape themselves [SACO20]. To this point, we perform evaluations on a
fully remeshed version of the dataset [DSO20], a more challenging task better rep-
resentative of real-world applications. As in prior work, we train on the first 80

models out of the 100 in the dataset, and use the remainder for testing.
We train an FCNet to predict the indices of corresponding vertices on a template

shape. Due to the degree of precision required by this task, weuse a deeper network,
consisting of eight FCResNet blocks (𝑁 = 3, 𝐵 = 1, 𝜖 = 0.05) followed by an ECHO
block (𝐷 = 12, 𝐻 = 13) with a 124–64–32 MLP, and additional residual connections
after every two FCResNet blocks. To make predictions, we add two linear layers
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Figure 6-5. Percentage of correspondences for a given geodesic error on theremeshed FAUST dataset using field convolutions (FC), HSN, and ACSCNN (ACS).
after the ECHO block, taking the 32 features first to 256 channels, and then to the
number of vertices on the template shape, with a 𝑝 = 0.5 dropout layer in-between.
Visualizations of some of the 32 channel features in our FCNet at the bottleneck
before the dense final layers are shown in Figure 6-4.

Prior methods have typically used high-dimensional SHOT [TSDS10b] descrip-
tors as inputs for this task, which we feel to be unnecessary due to the expres-
siveness of the field convolution framework. As such, we train HSN and ACSCNN
[LLHL20] with raw 3D coordinates inputs for comparison – two recent methods
which have reported state-of-the-art results in similar classification tasks. The re-
sults are shown in Figure 6-5, giving the percentage of total correspondences as
a function of the normalized geodesic error. Our FCNet achieves the best perfor-
mance, followed by ACSCNN.

Recent spectral-based networks, ACSCNN and DiffusionNet [SACO20], have sig-
nificantly outperformed comparable equivariant networks in correspondence re-
lated tasks. This is likely for two reasons: 1) In contrast to the local patch-based
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Figure 6-6. Results of feature matching evaluations on the SHREC 2019 IsometricandNon-Isometric Shape Correspondence dataset [DSL+19] in the form of themeanprecision-recall curves.
convolution operators used in equivariant networks, spectral-based convolutions
are formulated in a Laplace-Beltrami basis, providing an inherently global charac-
terization of shape less sensitive to point-wise noise or local mislabeling; 2) The
ability to essentially band-limit convolutions by working in basis of low-frequency
eigenfunctions allows spectral-based networks to easily scale to high resolutions
whereas equivariant networks must decrease both filter support and the number
of parameters to process the same meshes. This makes the performance of our FC-
Net particularly notable as it suggests that the network is able to overcome the rel-
ative limitations of equivariant frameworks in dense correspondence tasks specifi-
cally due to the robust construction of field convolutions as a scattering operation
– keeping them stable despite smaller supports – and due to their descriptiveness,
the latter of which does not diminish significantly even with fewer parameters.
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6.6.5 Feature matching

Last, we train an FCNet to compute point-wise surface feature descriptors on shapes
from the SHREC 2019 Isometric and Non-Isometric Shape Correspondence dataset
[DSL+19]. The dataset consists of 50 meshes constructed from 3D scans of a jacketed
humanoid figurine and a bare and gloved articulated wooden hand with 76 pre-
defined pairs of meshes. We consider this dataset to be extremely challenging with
significant non-isometric deformations and topological changes between pairs; as
real-world scans the meshes also contain noise, varying triangulations, occluded
geometry and various other sources of interference.

To ensure an even distribution of meshes in both the training and testing data,
we group all pairs into three categories based on scan source (humanoid, hand, and
gloved hand) and randomly select 20% of the pairs in each category to form the
test split. Each pair in the SHREC 2019 Correspondence Dataset [DSL+19] consists
of a model mesh 𝑉𝑀 and a scene mesh 𝑉𝑆, with the dense ground-truth correspon-
dence mapping the latter to the former. We randomly generate correspondences
𝐶𝑆𝑀 = {(𝑠𝑖 , 𝑚𝑖)} ⊂ 𝑉𝑆 × 𝑉𝑀 and non-correspondences 𝑁𝑆𝑀 = (𝑉𝑆 ×𝑉𝑀) \ 𝐶𝑆𝑀 by
selecting 2048 points on both the model and the scene mesh using farthest point
sampling, mapping the sampled scene points to the model mesh using the ground
truth correspondence, and associating eachmapped scene point to the geodesically
nearest sampled point on the model.

We learn compact, 16-dimensional descriptors at each point using a twin net-
work [LB13, MBBV15, SHG+20], where eachmesh in a pair is processed by the same
network and a twin loss function is minimized, weighting the descriptor distances
between corresponding and non-corresponding points. In training, the objective
of the network is to make the outputs for corresponding and non-corresponding
pairs as similar and dissimilar as possible, respectively [LB13, MBBV15]. Specifi-
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cally, for each pair of meshes in each epoch, we randomly subsample 512 pairs of
corresponding and non-corresponding points, 𝑃𝑆𝑀 = 𝐶512

𝑆𝑀 ∪𝑁512
𝑆𝑀 and minimize the

twin loss [SHG+20]
𝐿 (𝑃𝑆𝑀) =

∑︁
(𝑠, 𝑚)∈𝑃𝑆𝑀

𝛼𝑠,𝑚∥𝐹𝑆 (𝑠) − 𝐹𝑀 (𝑚) ∥2+(︁
1 − 𝛼𝑠,𝑚

)︁
max

(︂
0, 5 − ∥𝐹𝑆 (𝑠) − 𝐹𝑀 (𝑚) ∥2

)︂
,

(6.7)

where 𝛼𝑠,𝑚 = 1 if (𝑠, 𝑚) ∈ 𝐶𝑆𝑀 or is set to a random variable between 0 and 0.2

otherwise. We compute precision-recall in the same manner as was done in the
evaluation of the ECHO descriptors as in Equation (5.6), considering the set of sam-
pled model points that are valid matches with a given point 𝑝 to consist of those
whose ground-truth correspondence lies within a geodesic ball of radius 0.05 about
𝑝. While this corresponds to a slightly more relaxed definition of correspondence,
we find that all methods perform better maintaining a stricter notion of correspon-
dence during training.

We train an FCNet consisting of eight FCResNet blocks (𝑁 = 6, 𝐵 = 1, 𝜖 = 0.1)

on the downsampled 2048-vertex mesh pairs, using the magnitudes of the output
features as point-wise descriptors. HSN and ACSCNN are trained on the downsam-
pled and full-resolutionmeshes, respectively. We report results averaged over three
random samplings of the test-train split (Figure 6-6); to ensure fair comparisons, we
compute the average precision-recall curves over all test pairs using the same set
of correspondences for all methods. Our FCNet achieves the best performance by
a significant margin, followed by HSN. The difference is likely explained by the in-
creased descriptiveness of field convolution and its robust formulation as a scatter-
ing operation, making it better able to characterize flat, featureless areas (Figure 6-
7, palm of the hand) and insensitive to high-frequency perturbations of the surface
(Figure 6-7, folds in the figurine jacket), as compared to the gathering-based convo-
lution operations used by HSN which rely on strongly constrained filters. We be-
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FC HSN ACSCNN
Figure 6-7. Feature-space distances: For each feature from the models on the right,we rank order the features on the model to the left by feature distance. Verticesare then colored from gray to red, showing how deeply one must traverse the rankordered list before encountering a corresponding feature.
lieve that ACSCNN under-performs relative to the other methods because methods
like ACSCNN which depend on the (global) spectral decomposition of the Laplace-
Beltrami operator are less stable in the presence of non-isometric deformations, ge-
ometric occlusions, and changes in topology between corresponding pairs. While
still not giving excellent performance, methods like FCNet and HSN, which use fil-
ters with local support, tend to be more robust.

6.6.6 Performance

Field convolutions are among themost efficient equivariant convolution operations,
requiring few parameters per convolution operation. On an RTX 2080 GPU and 3.8
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GHz CPU, our deepest FCNet trains at approximately 3 min/epoch on the full reso-
lution meshes in the dense correspondence task. Field convolutions use a similar
number of parameters as HSN [WEH20] per convolution and with half the mem-
ory footprint. HSN’s multi-stream convolutions learn a weight matrix for the radial
profile and rotational offset corresponding to each stream and the connections be-
tween them, resulting in (𝑁 + 1) 𝑆2 total parameters per convolution, with 𝑁 the
number of radial samples and 𝑆 the number of streams. Similarly, we learn a com-
plex radial profile and rotational offset for each non-negative frequency up to the
number of band-limited frequencies with𝑁 (2𝐵+1) +𝐵+1 total parameters per con-
volution. In the classification and segmentation experiments, HSN reports results
using 𝑁 = 6 radial samples and 𝑀 = 2 streams resulting in 28 total parameters per
convolution. In the same experiments, our FCNet achieves state-of-the-art perfor-
mance with 33 total parameters per convolution, as we use filters with band-limit
𝐵 = 2 and the same number of radial bins. However, HSN stores features for both
streams, increasing spatial complexity by a factor of two.

More generally, we see our state-of-the-art results on the segmentation task using
the composite dataset [MGA+17] as particularly notable in that other top-performing
methods, including MeshCNN [HHF+19] and HSN, use the deepest versions of their
network for this task despite the small number of labels involved (eight classes), pre-
sumably because of the large size of the training dataset. Our FCNet outperforms
these networks with a much shallower architecture and only in the dense corre-
spondence and feature matching tasks – both of which involve learning granular
distinctions between large numbers of similar points – do we increase the depth of
our network. This suggests that unlike most networks, the depth of an FCNet (or
other network built on field convolutions) necessary to achieve good performance
is not strongly dependent on the size of the dataset, and scales primarily with task
complexity.
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6.7 Conclusion

Field convolution offers rich notion surface convolution on vector fields, combining
invariant spatial weighting with the parallel transport of features in a scattering
operation while placing no constraints on the filters themselves. This formulation is
highly descriptive, insensitive to a variety of nuisance factors, and straight-forward
to implement; with it, we construct simple networks that achieve state-of-the-art
results in fundamental geometry-processing tasks.

While the complexity of our method is comparable to existing equivariant ap-
proaches, it shares the same drawbacks as filter supports and parameter counts
must be limited to process meshes at full resolution. More generally, existing suc-
cessful surface learning frameworks (including ours) are designed to handle only
isometric or nearly-isometric shape deformations and fail to achieve adequate per-
formance in the presence of the kinds of complex deformations, geometric occlu-
sions, and topological changes found in real shape data.
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Chapter 7

Möbius-Equivariant Spherical CNNs

7.1 Introduction

Convolutional neural networks (CNNs) are effective because convolution responds
to a contextualized window on the signal, forcing the learning to be translation-

equivariant. However, vanilla CNNs assume a fixed orientation for the coordinate
frame and lose effectiveness in the presence of deformations that change the frame.
This has lead to the development of more general notions of convolution equivari-
ant to transformation groups including rotations [CW16, WGTB17] and dilations
[WW19, SSS19a, FSIW20]. Critically, the notion of rotation-equivariance has facil-
itated the generalization of CNNs to domains without a canonical orientation at
each point such as the sphere [CGKW18, CWKW19b, EMD20] and arbitrary surfaces
[dHWCW20, WEH20, MKK21]. The resulting networks are isometry-equivariant –
able to repeatably characterize local features in the presence of distance-preserving
transformations – and have excelled in fundamental geometry processing tasks
such as shape classification, segmentation, and correspondence.

Despite their success, rotation- and isometry-equivariant CNNs can fail to achieve
adequate performance in the presence of the kinds of complex deformations com-
monly found in real-world image and shape data [MKK21]. Such deformations may
potentially be better modeled by higher-dimensional transformation groups. For
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example, homographies (projective transformations) better approximate changes
in camera viewpoints than similarities (rotations and dilations) [HZ03] and, for
spherical images, can be represented using conformal transformations [EMSJB14,
SS16]. For geometry processing, conformal (angle-preserving) transformations en-
compass a broader class of deformations than isometries that still preserve the
sense of ‘shape’ [LPRM02, GWC+04, CPS11].

Using Möbius-equivariant extended convolution as defined in §3.3.2 – which
we refer to as Möbius convolution (MC) – we develop the foundations for Möbius-

equivariant spherical CNNs. To facilitate efficient evaluations, we parameterize fil-
ters using log-polar basis functions from which we derive an approximation of the
action of the frames, allowing us to compute our convolutions via the Fast Spheri-
cal Harmonic Transform [DH94, KR08]. Our framework is flexible, and we demon-
strate the utility of ourMöbius-equivariant CNNs by achieving promising results on
standard benchmarks in both genus-zero shape classification and spherical image
segmentation.

7.2 Related work

Existing group-equivariant CNNs can be broadly categorized based onwhether con-
volution is integrated over the group itself or the domain on which it acts. CNNs
based on the former approach were first introduced by [CW16, CGW19], where
kernels are parameterized in terms of equivariant basis functions on the group it-
self and convolution is performed by lifting features from the domain and search-
ing over all possible transformations of the features or kernels. This approach is
highly effective when considering the action of discrete groups on features sam-
pled on a regular lattice, and has since been extended to handle the continuous
group of rotations in both two and three dimensions [CGKW18, LW21]. However,
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this approach isn’t readily generalizable – either theoretically or computationally –
to higher-dimensional or non-compact groups, where there aremore parameters to
integrate over, the domains of integration are unbounded, and the representations
are infinite-dimensional.

Recent work by [FSIW20] largely sidesteps these problems by considering only
the origin-preserving subgroups and integratingwith respect to an equivariantMonte
Carlo estimator to facilitate evaluations. However, this approach assumes that the
group acts linearly on the domain and requires the exponential mapping from the
infinitesimal generators to the group to be surjective, precluding its generalization
to groups that act projectively.

Equivariant CNNs that integrate over the domain on which the group acts can
trace their lineage to earlier work on steerable filters [FA91, SF96, THO99] – ker-
nels are parameterized in terms of equivariant basis functions on the domain that
rotate or dilate with the local coordinate system [WGTB17, WC19, WW19, SSS19a].
This approach has been extended to volumetric domains [WC19] and point clouds
[QSMG17], and has facilitated the development of isometry-equivariant CNNs on do-
mains without canonical coordinate systems such as the sphere [CGKW18, EMD20]
andarbitrary 2D surfaces [WEH20, dHWCW20,MKK21]. Unfortunately, finite-dimensional
equivariant bases often don’t exist for non-commutative and non-compact transfor-
mation groups of interest, limiting the practical scope of these approaches.

Recently, fully-connected networks have been developed that achieve equivari-
ance to non-compact transformation groups including the Lorentz group [BAO+20],
the Poincaré group [VHSF+21], and the symplectic group [FWW21] – all closely re-
lated to Möbius transformations. However, we are not aware of existing convolu-
tional neural networks that are equivariant to either projective transformations or
Möbius transformations, and believe our approach to be the first in both regards.
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7.3 Method overview

Möbius convolutions provide a method for Möbius-equivariant spatial aggregation
on the sphere. We facilitate an efficient discretization by parameterizing filters us-
ing log-polar basis functions from which we derive a linearized approximation of
the action of the frames, allowing us to compute Möbius convolutions via the fast
spherical harmonic transform [DH94, KR08].

We complete the foundations for Möbius-equivariant CNNs by introducing a
conformally-equivariant normalization layer based on filter response normaliza-
tion [SK20] and we validate equivariance by direct experimental evaluation. The
principlemodule in applications is a simpleMöbius convolutionResNet (MCResNet)
block [HZRS16], which is self-contained and flexible. We demonstrate the utility of
our framework by achieving promising results on standard benchmarks in both
genus-zero shape classification and spherical image segmentation.

7.4 Discretization

Recall from §3.3.2 that an SL(2,ℂ)-equivariant (i.e. Möbius-equivariant) extended
convolution of a function 𝜓 with a filter 𝑓 , both in 𝐿2(ˆ︁ℂ,ℂ), can be defined as:

(𝜓 ∗ 𝑓 ) ( 𝑦) (3.28)
=

∫
ˆ︁ℂ 𝜌𝜓(𝑧)

[︁
𝔗𝜓(𝑧) 𝑓

]︁ (︁
Log𝑧 𝑦

)︁
𝑑𝑧, (7.1)

with the generalized logarithm
Log𝑧

(3.27)
≡ 1

|𝑐|
√︁

1 + |𝑧 |2

[︃
𝑐 −𝑐𝑧
�̄��̄� �̄�

]︃
∈ SU(2) ⊂ SL(2,ℂ),
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and the frame operator 𝔗 : 𝐿2(ˆ︁ℂ,ℂ) → L and the density operator 𝜌 : 𝐿2(ˆ︁ℂ,ℂ) →
𝐿2(ˆ︁ℂ,ℂ) given by
𝔗𝜓(𝑥)

(3.29)
≡

[︄ [︁
𝑑 Log𝑥𝜓|︁|︁

0
]︁− 1

2 0
1
2
[︁
∇𝑑 Log𝑥𝜓|︁|︁

0
]︁ [︁

𝑑 Log𝑥𝜓|︁|︁
0
]︁− 3

2
[︁
𝑑 Log𝑥𝜓|︁|︁

0
]︁ 1

2

]︄
∈ L ⊂ SL(2,ℂ)

𝜌𝜓(𝑥)
(3.32)
≡

|︁|︁|︁ 𝑑 Log𝑥𝜓|︁|︁
0

|︁|︁|︁ 2
.

(7.2)

We call this convolutional operator Möbius convolution, and to compute it at the
scale necessary to build CNNs, we develop an implementation based on the fast
Spherical Harmonic Transform [DH94, KR08]. We give an outline of this process
below and leave the details to Appendix I.
Identity convolution with the Spherical Harmonic Transform

To simplify the calculation, wefirst consider a simpler non-equivariant convolution,
we call an identity convolution, where we replace the frame and density operators
from Equation (7.2) with the trivial frame field 𝔗𝜓(𝑧) = 𝑒 (with 𝑒 the identity) and
the density 𝜌𝜓(𝑧) = 𝜓(𝑧),

(𝜓 ∗𝑒 𝑓 ) ( 𝑦) =
∫

ˆ︁ℂ 𝜓(𝑧) 𝑓
(︁
Log𝑧 𝑦

)︁
𝑑𝑧, (7.3)

using ∗𝑒 to distinguish it from the equivariant convolution.
Assuming that 𝜓 and 𝑓 are band-limited functions, they can be expressed in

terms of their spherical harmonic decompositions as
𝜓 =

𝐵−1∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝝍𝑙𝑚𝑌𝑚
𝑙 and 𝑓 =

𝐵−1∑︁
𝑙′=0

𝑙′∑︁
𝑚′=−𝑙′

f𝑙′𝑚′ 𝑌𝑚′

𝑙′ . (7.4)
with 𝐵 the band-width. Recalling that Log𝑧 is a rotation, we know that it preserves
the frequency content and expand

𝑓 ◦ Log𝑧 =
𝐵−1∑︁
𝑙′=0

∑︁
|𝑚′ |≤𝑙′

∑︁
|𝑚′′ |≤𝑙′

f𝑙′𝑚′𝐷𝑙′
−𝑚′𝑚′′

(︁
Log𝑧

)︁
𝑌𝑚′′

𝑙′
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where 𝐷𝑙′
−𝑚′𝑚′′ is the Wigner-D function giving the (𝑙′, 𝑚′′)-th spherical harmonic

coefficient of the rotation of 𝑌𝑚′

𝑙′ [CK16]. Furthermore, using the fact that in the 𝑧 −
𝑦−𝑧 Euler angle notation our definition of Log𝑧 corresponds to a rotation described
by an Euler triplet whose first entry is zero, it follows that the integral vanishes

0 =

∫
ˆ︁ℂ𝑌𝑚

𝑙 (𝑧) · 𝐷𝑙′
−𝑚′𝑚′′

(︁
Log𝑧

)︁
𝑑𝑧

whenever 𝑚′′ ≠ 𝑚. Thus, expanding Equation (7.3) we get

(𝜓 ∗𝑒 𝑓 ) ( 𝑦) =
𝐵−1∑︁
𝑙′=0

𝑙′∑︁
𝑚′′=−𝑙′

⎡⎢⎢⎢⎢⎣
𝐵−1∑︁

𝑙=|𝑚′′ |
𝝍𝑙𝑚′′

(︄
𝑙′∑︁

𝑚′=−𝑙′
f𝑙′𝑚′𝛥𝑚

′𝑚′′

𝑙𝑙′

)︄⎤⎥⎥⎥⎥⎦ 𝑌𝑚′′

𝑙′ (7.5)

where the value of 𝛥𝑚′𝑚′′

𝑙𝑙′ is independent of 𝜓 and 𝑓 ,
𝛥𝑚

′𝑚′′

𝑙𝑙′ =

∫
ˆ︁ℂ𝑌𝑚′′

𝑙 (𝑧) · 𝐷𝑙′
−𝑚′𝑚′′

(︁
Log𝑧

)︁
𝑑𝑧. (7.6)

From this, we can compute identity convolutions efficiently by: 1). Computing
the spherical harmonic coefficients of 𝜓 and 𝑓 using the fast SHT; 2). Summing
the two sets of coefficients according to Equation (7.5) to get the coefficients of the
convolution; and 3). Applying the fast inverse SHT to reconstruct the convolution.

The complexity of steps 1 and 3 are proportional to those of the fast SHT, which
is𝑂(𝐵2 log2 𝐵). However, in our implementationwe compute the discrete Legendre
transform via sparse matrix multiplication for a total complexity of proportional to
𝑂(𝐵3 log 𝐵), which we find to be more efficient on the GPU. Step 2 has complexity
𝑂(𝐵4), and we show that this computation can be re-used in computing the full
(equivariant) convolution.
Spherical log-polar bases

To efficiently compute arbitrary Möbius convolutions as in Equation (7.1), we ap-
proximate them as sums of identity convolutions. To do so, we choose a basis for
our filters that enables an approximation of the action of 𝔗𝜓.
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Figure 7-1. Spherical log-polar functions B𝑡
𝑚𝑠 at integer exponents with 𝑡 = 0.15.

To this end we use linear combinations of log-polar (Fourier-Mellin) basis func-
tions [Vil78, VK91],

B𝑡
𝑚𝑠(𝑧) ≡

|𝑧 |𝑖𝑠
|𝑧 |𝑡

(︃
𝑧

|𝑧 |

)︃𝑚
(7.7)

with 𝑚 ∈ ℤ and 𝑠, 𝑡 ∈ ℝ. These function are localized about 𝑧 = 0 (resp. 𝑧 = ∞)
when 𝑡 > 0 (resp. 𝑡 < 0), are discontinuous at 𝑧 ∈ {0,∞} when 𝑚 ≠ 0 (since the
argument of 𝑧 is not defined) and singular at 𝑧 = 0 (resp. 𝑧 = ∞) when 𝑡 > 0 (resp.
𝑡 < 0). We note that, for the purposes of integration, the singularity can be ignored
when 𝑡 < 1. Loosely, this follows from the fact that ∫

1
𝑥𝑡

= 1
1−𝑡𝑥

1−𝑡 + 𝑐 which is
bounded at 𝑥 = 0 whenever 𝑡 ∈ (0, 1). Noting also that B𝑡

𝑚𝑠(𝑧) = B−𝑡
−𝑚−𝑠(1/𝑧), it

follows that the functions are continuous away from {0,∞} and, for the purposes
of integration, singularities at {0,∞} can be ignored when |𝑡 | < 1.

The first several basis functions at integer frequencies |𝑚| ≤ 2 and |𝑠| ≤ 3, with
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𝑡 = 0.15 are shown in Figure 7-1. The complex-valued functions are visualized using
the HSV scale: hue and value are determined by the arguments and magnitudes of
the function values, and saturation is fixed at one.

Using these as basis functions, we consider filters in the span

𝑓 =
𝑀∑︁

𝑚=−𝑀

𝑁∑︁
𝑠=−𝑁

𝑏𝑚𝑠 B𝑡
𝑚𝑠 (7.8)

where 𝑠 is constrained to be an integer and 𝑡 is positive so as to localize the filter
about the origin. In practice we use real-valued filters ( 𝑓 ∈ 𝐿2(ˆ︁ℂ,ℝ)), so 𝑏−𝑚−𝑛 =

𝑏𝑚𝑛, giving (2𝑀 + 1) (2𝑁 + 1) real parameters per filter.
Approximating the transformation of filters

Unfortunately, it is not the case that the space of band-limited filters spanned by
the B𝑡

𝑚𝑠 is fixed under the action of the lower-triangular subgroup. This is because,
in general, for non-compact, non-commutative groups, a space of functions fixed
under the action of the group (i.e. a representation) will be infinite-dimensional.

However, we show in the Appendix I that, given a filter as in Equation (7.8) and
given a lower-triangular matrix 𝐿 ∈ L, the transformation of the filter 𝑓 by 𝐿 can
be expanded as

𝐿 𝑓 =
∞∑︁

𝑚=−∞

∫ ∞

−∞

3∑︁
𝑗=1

𝑗𝜻
𝑡𝜎 𝑗

𝑚𝑠

(︁
𝐿, b

)︁
B𝜎 𝑗

𝑚𝑠 𝑑𝑠, (7.9)

where b is the (2𝑀 + 1) × (2𝑁 + 1)-dimensional vector of coefficients of 𝑓 ,𝑚 is now
summed over all integers, 𝑠 is continuous and integrated over the real line, 𝜎1, 𝜎2,
and 𝜎3 (the localization values) are any real values satisfying 𝑡 < 𝜎1 < 2, 𝑡 − 1 <

𝜎2 < 0, and 𝜎3 = 𝑡, and 𝑗𝜻
𝑡𝜎 𝑗

𝑚𝑠 are functions taking a lower-triangular matrix and a
set of filter coefficients, and returning the coefficient of B𝜎 𝑗

𝑚𝑠 in the expansion of the
transformed filter. Here, the integral is equivalent to an inverse Mellin transform

122



with frequency variable 𝑠, and the bounds on 𝜎1 and 𝜎2 are necessary to ensure
invertibility [Vil78, VK91].

Obviously, the infinite summation and the integration in Equation (7.9) make
evaluation unfeasible. We propose a practical implementation by truncating the
summation over the angular frequency 𝑚, and replacing the integration over the
real linewith a discrete approximationusing quadrature. The summation is a result
of the addition theorem for Bessel functions [Wat95]which appear in the derivation
of 𝑗𝜻

𝑡𝜎 𝑗

𝑚𝑠; it converges rapidly at low frequencies and can bewell-approximated with
only several terms [CK16]. The use of quadrature is motivated by the observation
that for a fixed transformation 𝐿 and filter coefficients b the function 𝑗𝜻

𝑡𝜎 𝑗

𝑚𝑠 tends to
be smooth and falls off quickly away from 𝑠 = 0. Using the approximation, we get

𝐿 𝑓 ≈
𝑀 ′∑︁

𝑚=−𝑀 ′

𝑄∑︁
𝑞=1

3∑︁
𝑗=1

𝑤𝑞 𝑗𝜻
𝑡𝜎 𝑗

𝑚𝑠𝑞

(︁
𝐿, b

)︁
B𝜎 𝑗

𝑚𝑠𝑞 (7.10)

where {𝑠𝑞} ⊂ ℝ are the quadrature points and {𝑤𝑞} are the associated quadrature
weights.

We remark that the principle idea behind the expansion in Equation (7.9) in-
volves exploiting the symmetry of the spherical log-polar basis functions under
Möbius transformations taking 𝑧 to −𝑧−1. This allows us to replace the projective
action of L with the affine action of the upper-triangular matrices – the group of ro-
tations, translations, and dilations – whose representations are better understood
[Vil78, VK91].
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Efficient Möbius Convolutions

Plugging the approximation in Equation (7.10) into the definition of Möbius convo-
lution in Equation (7.1) and moving the sums outside the integral gives

(𝜓 ∗ 𝑓 ) ≈
∑︁

−𝑀 ′≤𝑚≤𝑀 ′
1≤𝑞≤𝑄
1≤ 𝑗≤3

(︂
𝜌𝜓𝑤𝑞 𝑗𝜻

𝑡𝜎 𝑗

𝑚𝑠𝑞

(︁
𝔗𝜓, b

)︁
∗𝑒 B

𝜎 𝑗

𝑚𝑠𝑞

)︂
. (7.11)

Thus, by approximating the pointwise action of the frame operator 𝔗𝜓(𝑧), we can
approximate an arbitrary Möbius convolution as a sum of identity convolutions.
The components of 𝑗𝜻

𝑡𝜎 𝑗

𝑚𝑠𝑞 depending only on 𝑠 can be pre-computed for a fixed set
of quadrature points so that, in practice, the complexity of evaluating the function
at run time is linear in the coefficients of b and the sums over 𝑚, 𝑞, and 𝑗.

7.4.1 Complexity

In the approximation of Möbius convolution in Equation (7.11), the right side of
the identity convolutions is independent of the filter coefficients, so the innermost
bracketed term in Equation (7.5) can be pre-computed for a given band-limit 𝐵 (for
every angular frequency 𝑚, quadrature point 𝑠𝑞, and localization index 𝜎 𝑗). Thus,
the 𝑂(𝐵4) computational bottle-neck in computing the identity convolution need
only be performed once and the total complexity of computing the Möbius convo-
lution is𝑂(𝑀′𝑄𝐵3 log 𝐵). In applications, we find that setting𝑀′ = 𝑀 + 1 and using
a 𝑄 = 30 point trapezoidal quadrature rule in Equation (7.10) allows us to both
suitably approximate the transformation of the filter and scale up to 𝐵 = 64.

7.5 Möbius-Equivariant Spherical CNNs

Möbius convolutions provide a flexible framework for Möbius-equivariant spatial
aggregations on the sphere. With them, constructing Möbius-equivariant spherical
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CNNs is straight-forward and requires no specialized architecture. The atomic units
are the same as those found in regular CNNs – a convolutional layer, followed by
normalization and a non-linearity.

7.5.1 Convolutional layers

For a Möbius-convolution layer mapping 𝐶-channel input features 𝜓 ∈ 𝐿2(ˆ︁ℂ,ℝ𝐶)

to 𝐶′-channel output features 𝜓′ ∈ 𝐿2(ˆ︁ℂ,ℝ𝐶 ′), the 𝑐′−th output feature 𝜓′
𝑐′ is com-

puted in the usual manner by summing the convolutions of the input features with
the filters in the 𝑐−th row of the bank. However, the structure of Equation (7.11)
allows us to preform the reduction over the input channels before computing the
convolutions in the sum, such that

𝜓′
𝑐′ =

∑︁
−𝑀 ′≤𝑚≤𝑀 ′

1≤𝑞≤𝑄
1≤ 𝑗≤3

(︄
𝐶∑︁
𝑐=1

𝜌𝜓𝑐 𝑤𝑞 𝑗𝜻
𝑡𝜎 𝑗

𝑚𝑠𝑞

(︁
𝔗𝜓𝑐 , b

𝑐𝑐′)︁ ∗𝑒 B𝜎 𝑗

𝑚𝑠𝑞

)︄
, (7.12)

where b𝑐𝑐′ denotes the (2𝑀 + 1) (2𝑁 + 1) parameters for the (𝑐, 𝑐′)-th filter in the
bank. Thus, for each convolutional layer mapping 𝐶 input features to 𝐶′ output
features, we only need to compute 𝐶′ Möbius convolutions instead of 𝐶 × 𝐶′.

This advantage is not without caveat. A naive implementation of the inner sum
over the input channels produces large intermediate tensors at high resolutions
(𝐵 ≥ 64), which can quickly fill GPU memory. Our layers are implemented in Py-
Torch [PGM+19], where we fuse this operation to reduce its overhead.

7.5.2 Normalization and Non-linearities

Standard normalization techniques don’t commute with Möbius transformations,
since the mean and standard deviation of spherical signals are not invariant to di-
lation. Instead, we introduce a conformally-equivariant normalization layer based
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on filter response normalization [SK20], replacing the squaremeanwith the Dirich-
let energy which is invariant under Möbius transformations. The normalization is
applied on a per-channel basis independent of the batch size via the mapping

𝜓𝑐 ↦→
𝛼𝑐 𝜓𝑐√︂∫

ˆ︁ℂ 𝜌𝜓(𝑧) 𝑑𝑧 + 𝜖𝑐

+ 𝛽𝑐, (7.13)

where 𝜌𝜓 is defined as in Equation (7.2) and 𝛼𝑐, 𝛽𝑐 ∈ ℝ and 𝜖𝑐 ∈ ℝ>0 are learnable
per-channel parameters.

Followingnormalizationweapply thresholded activations as non-linearities, which
have been shown to better compliment filter response normalization than other ac-
tivation layers [SK20]. Here, we replace the ReLU with the Mish activation [Mis19]
whichwefind improves training speed andperformance. Specifically, non-linearities
are applied pointwise as,

𝜓𝑐 ↦→ Mish
(︁
𝜓𝑐 − 𝛾𝑐

)︁
+ 𝛾𝑐, (7.14)

where 𝛾𝑐 ∈ ℝ is a learnable per-channel threshold value. We note that the thresh-
olded activation is not fundamental to our framework, and can be replaced with
other activation layers if desired.

7.6 Evaluation

We validate our claim of Möbius-equivariance empirically in an ablation study and
demonstrate the utility of Möbius-equivariant CNNs by achieving strong results
in both geometry and spherical-image processing tasks. In the former paradigm,
we apply our framework to the task of genus-zero shape classification by confor-
mally mapping surfaces to the sphere; in the latter, we consider the task of omni-
directional image segmentation.

Our principle module in applications is anMCResNet block [HZRS16], consisting
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Figure 7-2. The equivariance error plotted as a function of themaximumconformalscale factor. Notably, moving from U(1) (rotations) to ℂ≠0 (rotations and dilations)does not provide a benefit – one must consider the full lower-triangular subgroup
L ⊂ SL(2,ℂ)

of two Möbius convolutions, each followed by the normalization layer and point-
wise non-linearity described in Equations (7.13-7.14), with a residual connection
between the input and output streams. We use a band-limited space of filters with
𝑀 = 𝑁 = 1 and set 𝑡 = 0.15, 𝜎1 = 0.35, 𝜎2 = −0.15. We fit our networks using
SGD with Nesterov momentum [SMDH13], training for 60 epochs with an initial
learning rate of 10−2, decaying to 10−4 on a cosine annealing schedule [LH17]. Our
framework is implemented in PyTorch [PGM+19].

7.6.1 Equivariance

We empirically validate the equivariance of our framework by quantifying the de-
gree to which our layers commute with Möbius transformations of increasing area
distortion. We consider a 32-channel, 𝐵 = 64 band-limitedMCResNet blockwith the
equivariant residual connection removed to avoid bias. We control the area distor-
tion of a Möbius transformation 𝑔 by composing a series of random rotations and
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inversions so that the maximal scale factor over ˆ︁ℂ equals a fixed value [BCK18]. De-
noting R as the mapping induced by passing features through the MCResNet layer,
we follow [dHWCW20,WW19, SSS19a] and define the equivariance error for a fixed
maximum scale factor 𝛼 ∈ ℝ≥0 as

Error =
E ( R( 𝑔𝜓 ) − 𝑔 R( 𝜓 ))2

Var 𝑔 R( 𝜓 ) with max
𝑧∈ˆ︁ℂ 𝜆2

𝑔 (𝑧) = 𝛼, (7.15)
where E and Var denote the mean and variance computed over 100 randomly ini-
tialized models, Möbius transformations, and features.

As a baseline, we compare our proposed approach against three other paradigms.
In the first, we replace Möbius convolution with a standard 5× 5 convolution layer
taking 𝜌𝜓 as input; in the second, we restrict the transformation field to rotations
so that 𝔗𝜓(𝑧) ∈ U(1); in the third, we loosen the restriction to include dilations
with 𝔗𝜓(𝑧) ∈ ℂ≠0. We note that the second and third paradigms are isometry-
equivariant, and that the latter is also equivariant to the conformal transformations
of the (non-compactified) plane.

The results are shown inFigure 7-2, where the equivariance error in Equation (7.15)
is plotted as a function of the maximum scale factor. The green curve is our pro-
posed method with 𝔗𝜓(𝑧) ∈ L. Using our method, the error stays very low, indicat-
ing that Möbius convolution is approximately equivariant even in the presence of
significant changes in scale (𝜆2

𝑔 (𝑧) ≥ 12). Notably, we see no improvement moving
from𝔗𝜓(𝑧) ∈ U(1) to𝔗𝜓(𝑧) ∈ ℂ≠0, suggesting that rotations and dilations alone fail
to well-characterize the local deformations induced by Möbius transformations.

7.6.2 Conformal Shape Classification

Next, we use Möbius convolutions to classify genus-zero shapes. The SHREC ’11
dataset [LGB+11] has become a popular choice for evaluating network performance
in shape classification tasks and several recent approaches have achieved near-
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Method Original Acc. Conformal Acc.
MC (ours) 99.1% 86.5%DiffusionNet [SACO20] 99.5% 64.9%FC [MKK21] 99.2% 40.7%

Conf.

Orig.

Table 7-I. Genus-zero shape classification. Several conformally deformed meshesfrom the SHREC ’11 dataset [LGB+11] are shown above.
perfect accuracy on the dataset [WNEH21, MKK21, MLR+20, SACO20]. However,
shapeswithin each of the 30 categories in the dataset differ only by (approximately)
isometric deformations. To better highlight the strengths of our approach, we ex-
tend the dataset to include deformations given by random conformal transforma-
tions with several examples shown above Table 7-I.

To apply our framework, we conformallymap eachmesh to the sphere viamean
curvature flow [KSBC12] and use a simple network consisting of a single 16-channel,
𝐵 = 64 band-limited MCResNet block followed by a global mean pool and a fully-
connected layer to give predictions for the 30 shape categories.

We fit our network on both the original SHREC ’11 dataset and our conformally-
augmented version using 10 samples per class. For comparisons, we report the
results of Field Convolutions (FC) [MKK21] and DiffusionNet [SACO20] – two state-
of-the-art surface networks – on the original dataset and train both networks on
the conformally-augmented version. As inputs, each network takes the Heat Kernel
Signature (HKS) [SOG09] computed at 16 different timescales; since the HKS isn’t
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Method Accuracy IoU
MC (ours) 60.9% 43.3% }︄

SpectralSWSCNN [EMD20] 58.7% 43.4%SphCNN [EABMD18] 52.8% 40.2%
CubeNet [SR+21] 62.5% 45.0% }︄

SpatialHexNet [ZLSC19] 58.6% 43.3%UGSCNN [JHK+18] 54.7% 38.3%
Table 7-II. Omni-directional image segmentation

conformally-invariant, we use the values computed on the original meshes when
training and testing on their conformally-augmented counterparts.

Results are shown in Table 7-I in the form of the mean classification accuracy
over three randomly sampled test-train splits. Our simple Möbius convolution net-
work matches the state-of-the-art performance of FC and DiffusionNet on the origi-
nal dataset and significantly outperforms both on the conformally augmented ver-
sion, despite the fact that the transformations between the spherically-parameterized
meshes aren’t perfectMöbius transformations. Like FC andDiffusionNet, ourmethod
is equivariant to isometric deformations of the meshes as they manifest as Möbius
transformations after parameterization to the sphere, which serves to explain our
strongperformance on the original dataset. However, in addition,Möbius-equivariance
allows our rudimentary network to better account for conformal deformations be-
tween similar shapes and suggests that a new class of conformally-equivariant sur-
face networks may outperform existing isometry-equivariant networks in challeng-
ing shape analysis and recognition tasks.

7.6.3 Omni-directional Image Segmentation

Last, we demonstrate the utility of Möbius convolutions by moving from geometry
to imageprocessing, whereweapply them to semantically segment omni-directional
images from the Stanford 2D3DS dataset [ASZS17]. Here, we use MCResNet blocks
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to construct a U-Net [RFB15] architecture with 32, 64, 128, 256, 128, 64, 32 channels
per layer, applying max pooling or nearest neighboring upsampling before each
increase or decrease in channel width. As with other state-of-the-art equivariant
spherical networks [EMD20, SR+21], we find our method performs best as a feature
extractor for a small network of standard convolutional layers due to the consis-
tent latitudinal orientation of the images; we append six 3 × 3 2D convolutions to
the end of our network to predict labels. To measure performance, we report the
mean per-class segmentation accuracy and intersection over union (IoU) averaged
over three official folds.

Results are shown in Table 7-II, and we attain performance comparable to the
state-of-the-art. Existing successful spherical networks compute convolutions ei-
ther in the spatial domain [SR+21, ZLSC19, JHK+18] or, like our method, in the spec-
tral domain via expansions in spherical basis functions. In the latter case, efficiency
and scalable filter support comes at the cost of fidelity, as some degree of high-
frequency information is lost when computing the forward SHT due to the fixed
band-limit assumption. This puts spectral methods at a disadvantage in precision
labeling tasks like segmentation, where spectral aliasing can blur sharp boundaries
and over-smooth the kinds of hyper-localized features necessary to make accurate
predictions in the presence of a large class imbalance. Compounded by the de-
valuation of equivariance due to the consistent orientation of the images, this is
a challenging task for our framework. However, we outperform existing rotation-
equivariant spectral approaches, demonstrating that we are able to achieve equiv-
ariance to a more complex group of transformations without sacrificing descrip-
tiveness.
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7.7 Conclusion

Using Möbius-equivariant extended convolution, we develop the foundations for
Möbius-equivariant spherical CNNs and demonstrate the utility of this framework
by achieving strong results in both geometry and spherical-image processing tasks.
More generally, this work represents an effort to move both image and surface con-
volutional neural networks beyond standard rotation- and isometry-equivariance
and into the realm of conformal-equivariance. In particular, our experiments sug-
gest that the latter transitionmay be especially relevant in the context of shape anal-
ysis and recognition and we hope this work serves to catalyze the development of
a new generation of surface networks better able to handle the kinds of complex
deformations found in real-world shape data.
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Chapter 8

Conclusion

This thesis presents extended convolution – aunified framework for transformation-
equivariant convolutions on arbitrary homogeneous spaces and 2D Riemannian
manifolds. Extended convolution is based on a key observation: to achieve equiv-
ariance to a given group of transformations we only need to consider the stabilizer
subgroupwhich deforms the positions of points as seen in the frames of their neigh-
bors. By defining an equivariant frame operator at each point with which we align
the filter, we correct for the change in the relative positions induced by subgroup.
To compute convolutions, input features are mapped to a density distribution, con-
trolling for the change in area measure, and integrated against the aligned filters
over homogeneous space, rather than the group itself.

Extended convolution is highly flexible and descriptive - the construction places
no constraints on the kinds of filters that can be used. Furthermore, the frame-
work can handle arbitrary transformation groups, including higher-dimensional
non-compact groups that act non-linearly on the domain, such as Möbius transfor-
mations of the sphere. Critically, extended convolution naturally generalizes to ar-
bitrary 2D Riemannian manifolds – such as the surfaces of 3D shapes – as it does
not need a canonical coordinate system to be applied.

The power and utility of the extended convolution framework is demonstrated
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in several applications. A unified family ECHO (Extended Convolution Histogram
of Orientations) of local image and surface descriptors is proposed, constructed by
rasterizing the filter maximizing the response of the extended convolution at a key-
point. The ECHO image descriptor matches the performance of SIFT on a challeng-
ing, large-scale image dataset and using biharmonic distances, the ECHO surface de-
scriptor significantly outperforms the SHOT, RoPS, USC, and ISC descriptors in terms
of overall descriptiveness and remains more distinctive under significant levels of
Gaussian noise, changes in tessellation quality, and complex deformations.

Field convolution generalizes extended convolution to an operator on surface
vector fields, offing a rich notion of convolution that combines invariant spatial
weightingwith the parallel transport of features in a scattering operationwhile plac-
ingno constraints on thefilters themselves. Field convolution is isometry-equivariant,
highly descriptive, insensitive to a variety of nuisance factors, and straight-forward
to implement; with it, we construct simple networks that achieve state-of-the-art re-
sults in fundamental geometry-processing tasks including shape classification, seg-
mentation, dense correspondence, and feature matching.

Last, we move beyond rotations and isometries and realize the full potential of
the extended convolution framework in providing a recipe for constructing con-
volutional operators equivariant to high-dimensional non-compact transformation
groups that act non-linearly. Specifically, Möbius-equivariant extended convolution
is used to develop the foundations for Möbius-equivariant spherical CNNs. More
generally, this work represents an effort to move both image and surface convo-
lutional networks into the realm of conformal-equivariance, and we believe our
network to be the first of its kind in this regard. In particular, our experiments
suggest that the latter transition may be especially relevant in the context of shape
analysis and recognition. Looking forward, we hope this work serves to catalyze
the development of a new generation of surface networks better able to handle the
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kinds of complex deformations found in real-world shape data.
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Appendix I

Transformation of Functions on ˆ︁ℂ
Given a filter 𝑓 parameterized as in Equation (7.8),

𝑓 =
𝑀∑︁

𝑚=−𝑀

𝑁∑︁
𝑠=−𝑁

𝑏𝑚𝑠 B𝑡
𝑚𝑠,

where B𝑡
𝑚𝑠 are the spherical log-polar functions

B𝑡
𝑚𝑠(𝑧) ≡

|𝑧 |𝑖𝑠
|𝑧 |𝑡

(︃
𝑧

|𝑧 |

)︃𝑚
,

we derive the expansion of the transformation of the filter by a lower triangular
matrix 𝐿 =

[︁
𝑎 0
𝑛 𝑎−1

]︁
∈ L ⊂ SL(2,ℂ) given in Equation (7.9):

𝐿 𝑓 =
∞∑︁

𝑚=−∞

∫ ∞

−∞

3∑︁
𝑗=1

𝑗𝜻
𝑡𝜎 𝑗

𝑚𝑠

(︁
𝐿, b

)︁
B𝜎 𝑗

𝑚𝑠 𝑑𝑠.

Noting that 𝑗𝜻
𝑡𝜎 𝑗

𝑚𝑠

(︁
𝐿, b

)︁ is a linear function in b, we first derive an expansion for the
transformation of the log-polar bases 𝐿B𝑡

𝑚𝑠. Then, we substitute this expression
into the filter parameterization Equation (7.8), to recover 𝑗𝜻

𝑡𝜎 𝑗

𝑚𝑠

(︁
𝐿,b

)︁ . Afterwards
we discuss how we approximate the expansion in practice as in Equation (7.10).

A. Transformation of Spherical Log-Polar Bases

Here we derive an expansion of the transformation of the spherical log-polar bases
B𝑡
𝑚𝑠 by a lower triangular matrix 𝐿 ∈ L. Specifically, we seek an expansion which
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expresses 𝐿B𝑡
𝑚𝑠 as a linear combination of log-polar bases depending on 𝑧, indexed

in angular and radial frequencies 𝑢 and 𝜔 and localization variables 𝜎 – B𝜎
𝑢𝜔 – with

a set of coefficient functions depending only on 𝐿.
We consider elements 𝐿 ∈ L ⊂ SL(2,ℂ) of the form

𝐿 =

[︃
𝑎 0
𝑛 𝑎−1

]︃
with 𝑎, 𝑛 ∈ ℂ, 𝑎 ≠ 0. (I.1)

We treat separately the cases where 𝑛 = 0 and 𝑛 ≠ 0, first finding an expansion
of 𝐿B𝑡

𝑚𝑠 for each and afterwards combining the two to form an expansion of 𝐿B𝑡
𝑚𝑠

which holds for all 𝐿 ∈ L.

Case 1 (𝑛 = 0) : If 𝑛 = 0, then for any 𝑧 ∈ ˆ︁ℂ
𝐿−1𝑧 = 𝑎−2𝑧,

and directly evaluating [︁
𝐿B𝑡

𝑚𝑠

]︁
(𝑧) = B𝑡

𝑚𝑠

(︁
𝐿−1𝑧

)︁ gives[︁
𝐿B𝑡

𝑚𝑠

]︁
(𝑧) (7.7)

=
|𝑎−2𝑧 |𝑖𝑠
|𝑎−2𝑧 |𝑡

(︃
𝑎−2𝑧

|𝑎−2𝑧 |

)︃𝑚
=

|𝑎−2 |𝑖𝑠
|𝑎−2 |𝑡

|𝑧 |𝑖𝑠
|𝑧 |𝑡

(︃
𝑎−2

|𝑎−2 |

)︃𝑚 (︃
𝑧

|𝑧 |

)︃𝑚
=

|𝑎2 |−𝑖𝑠
|𝑎2 |−𝑡

(︃
𝑎2

|𝑎2 |

)︃−𝑚 |𝑧 |𝑖𝑠
|𝑧 |𝑡

(︃
𝑧

|𝑧 |

)︃𝑚
(7.7)
= B−𝑡

−𝑚−𝑠(𝑎2) B𝑡
𝑚𝑠(𝑧), (I.2)

where the last equality provides the desired expansion.

Case 2 (𝑛 ≠ 0): Here, finding an expansion for 𝐿B𝑡
𝑚𝑠 is significantly more involved

as 𝐿−1 acts projectively on ˆ︁ℂ. Specifically,
𝐿−1𝑧 =

𝑎−1𝑧

𝑎 − 𝑛𝑧
=

𝑧

𝑎2 − 𝑎𝑛𝑧
,

which does not allow for a straight-forward separation of variables as in Equa-
tion (I.2). Instead, webeginbymaking twoobservations. First, denoting 𝐽 = [︁

0 −1
1 0

]︁
∈
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SL(2,ℂ), it is easy to show that
𝐿−1 = 𝐽−1𝐿⊤ 𝐽 , (I.3)

where 𝐿⊤ ∈ T is the transpose of 𝐿, belonging to the subgroup U ∈ SL(2,ℂ) consist-
ing of all upper-triangular elements. Critically, 𝐿⊤ acts on ˆ︁ℂ not projectively but as
an affine transformation,

𝐿⊤𝑧 = 𝑎2𝑧 + 𝑎𝑛, (I.4)
equivalent to a planar rotation and dilation, followed by a translation. Second, for
all 𝑧 ∈ ˆ︁ℂ,

𝐽𝑧 = 𝐽−1𝑧 = −𝑧−1

from which it follows that
𝐽 B𝑡

𝑚𝑠 = 𝐽−1 B𝑡
𝑚𝑠 = 𝑒𝑖𝑠𝜋 B−𝑡

−𝑚−𝑠. (I.5)
Combining the observations in Equations (I.3) and (I.5), we have

𝐿B𝑡
𝑚𝑠

(𝐼 .3)
= 𝐽−1𝐿−⊤ 𝐽 B𝑡

𝑚𝑠

(𝐼 .5)
= 𝑒𝑖𝑠𝜋

[︁
𝐽−1𝐿−⊤B−𝑡

−𝑚−𝑠
]︁
, (I.6)

Our strategy now becomes clear. Using Equation (I.6), we can view the transforma-
tion of B𝑡

𝑚𝑠 by 𝐿 as the transformation of B−𝑡
−𝑚−𝑠 by 𝐿−⊤, followed by 𝐽 . This allows us

to replace the projective action of L with the affine action of the upper-triangular
subgroup U – the group of rotations, translations, and dilations – whose represen-
tations are better understood [Vil78, VK91]. Our goal is now to find an expansion
of 𝐿−⊤ B−𝑡

−𝑚−𝑠, which we can convert to the desired expansion for 𝐿B𝑡
𝑚𝑠 ∈ L via the

simple action of 𝐽−1 in Equation (I.5).
We recover an expansion of 𝐿−⊤ B−𝑡

−𝑚−𝑠 as follows: First, we apply the Hankel
transform in the radial dimension which will allow us to represent B−𝑡

−𝑚−𝑠 in terms
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of the irreducible unitary representations (IURs) of SE(2) – the group of planar ro-
tations and translations. From here we can use the regular representation of the
group to separate the rotational and translational components of 𝐿−⊤. To handle
the remaining dilation, we apply the Mellin transform, which results in the desired
expansion.

To simplify notation, we convert to polar coordinates
𝑧 ↦→ (|𝑧 |,Arg 𝑧) ≡ (𝑟, 𝜗).

In these coordinates B𝑡
𝑚𝑠 becomes

B𝑡
𝑚𝑠(𝑧) ↦→ B𝑡

𝑚𝑠(𝑟, 𝜗) = 𝑟𝑖𝑠−𝑡 𝑒𝑖𝑚𝜗 .

Similarly, we express 𝑎2, the rotational and dilational component 𝐿⊤𝑧, and 𝑎𝑛, the
translational component of 𝐿⊤𝑧, as

𝑎2 = 𝛼𝑒𝑖𝜑 and 𝑎𝑛 = 𝜏𝑒𝑖𝜘

for some 𝛼, 𝜏 ∈ ℝ>0 and 𝜑, 𝜘 ∈ [0, 2𝜋).
The following calculations were performed with the aid of Mathematica 13.0

[Wol21]. We begin by expressing 𝑟−𝑖𝑠+𝑡 in terms of its Hankel expansion in the an-
gular frequency −𝑚

𝑟−𝑖𝑠+𝑡 = 21−𝑖𝑠+𝑡 R𝑚𝑠

∫ ∞

0
𝜚𝑖𝑠−1−𝑡 𝐽−𝑚(𝜚𝑟) 𝑑𝜚, (I.7)

where

R𝑚𝑠 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ
(︂
1 − 𝑚−𝑡+𝑖𝑠

2

)︂
Γ

(︂
−𝑚−𝑡+𝑖𝑠

2

)︂ 𝑚 ≤ 0

(−1)𝑚
Γ

(︂
1 − −𝑚−𝑡+𝑖𝑠

2

)︂
Γ

(︂
𝑚−𝑡+𝑖𝑠

2

)︂ 𝑚 > 0

. (I.8)
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and Γ and 𝐽−𝑚 denote the Gamma function and Bessel functions of the first kind,
respectively. Substituting the Hankel expansion of 𝑟−𝑖𝑠+𝑡 in Equation (I.7) into the
polar coordinate expression for B−𝑡

−𝑚−𝑠 gives
B−𝑡
−𝑚−𝑠(𝑟, 𝜗) = 21−𝑖𝑠+𝑡 𝑒−𝑖𝑚𝜗 R𝑚𝑠

∫ ∞

0
𝜚𝑖𝑠−1−𝑡 𝐽−𝑚(𝜚𝑟) 𝑑𝜚. (I.9)

The matrix elements of the irreducible unitary representations of SE(2) are given
by [CK16]

ℎ
𝜚
𝑚𝑛(𝑟, 𝜗, 𝜙) = 𝑖𝑛−𝑚 𝑒−𝑖𝑛𝜙−𝑖 (𝑚−𝑛)𝜗 𝐽𝑛−𝑚(𝜚𝑟), (I.10)

where 𝜙 is the angle of rotation and 𝑟 and 𝜗 are the magnitude and polar angle of
the translation, respectively. It follows that Equation (I.9) can be written as

B−𝑡
−𝑚−𝑠(𝑟, 𝜗) = 21−𝑖𝑠+𝑡 𝑖𝑚 R𝑠𝑚

∫ ∞

0
𝜚𝑖𝑠−1−𝑡 ℎ𝜚𝑚0(𝑟, 𝜗, 0) 𝑑𝜚. (I.11)

From here we can use the regular representation of the group to separate the rota-
tional and translational components of 𝐿−⊤, expanding 𝐿−⊤ B−𝑡

−𝑚−𝑠 as[︂
𝐿−⊤ B−𝑡

−𝑚−𝑠

]︂
(𝑟, 𝜗) =

21−𝑖𝑠+𝑡 𝑖𝑚 R𝑚𝑠

×
∞∑︁

𝑢=−∞

∫ ∞

0
𝜚𝑖𝑠−1−𝑡 ℎ𝜚𝑚𝑢(𝜏, 𝜘, 𝜑) ℎ

𝜚
𝑢0(𝛼𝑟, 𝜗, 0) 𝑑𝜚.

(I.12)

Expanding the integral in Equation (I.12) gives∫ ∞

0
𝜚𝑖𝑠−1−𝑡ℎ𝜚𝑚𝑢(𝜏, 𝜘, 𝜑) ℎ

𝜚
𝑢0(𝛼𝑟, 𝜗, 0) 𝑑𝜌

(𝐼 .10)
= 𝑖−𝑚 𝑒−𝑖𝑢(𝜑+𝜗)−𝑖 (𝑚−𝑢)𝜘

×
∫ ∞

0
𝜚𝑖𝑠−1−𝑡 𝐽𝑚−𝑢(𝜏𝜚) 𝐽−𝑢(𝛼𝑟𝜚) 𝑑𝜚

= 𝑖−𝑚 𝑒−𝑖𝑢(𝜑+𝜗)−𝑖 (𝑚−𝑢)𝜘 𝛼−𝑖𝑠+𝑡

×
∫ ∞

0
𝜚𝑖𝑠−1−𝑡 𝐽𝑚−𝑢(𝛼−1𝜏𝜚) 𝐽−𝑢(𝑟𝜚) 𝑑𝜚 (I.13)

= 2𝑖𝑠−1−𝑡 𝑖−𝑚 𝑒−𝑖𝑢(𝜑+𝜗)−𝑖 (𝑚−𝑢)𝜘 𝜏−𝑖𝑠+𝑡 𝑀 𝑡
𝑠𝑚𝑢(𝛼2𝜏−2𝑟2), (I.14)
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where the second equality follows from the change of variables 𝑟 ↦→ 𝛼𝑟, and the
third fromevaluation of the integral (the inverseHankel transform in the (𝑚−𝑢)−th
frequency). Here,

𝑀 𝑡
𝑚𝑠𝑢(𝑟2) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝐺 1,1

2,2

(︃
x𝑡𝑚𝑠𝑢

y𝑢

|︁|︁|︁|︁ 𝑟2
)︃

𝑢 ≥ 𝑚

(−1)𝑢−𝑚 𝐺 1,1
2,2

(︃
x𝑡−𝑚𝑠−𝑢
y𝑢

|︁|︁|︁|︁ 𝑟2
)︃

𝑢 < 𝑚

,

x𝑡𝑚𝑠𝑢 =

[︃
1
2
(2 − 𝑢 − 𝑖𝑠 +𝑚 + 𝑡), 1

2
(2 + 𝑢 − 𝑖𝑠 −𝑚 + 𝑡)

]︃
,

y𝑢 =
[︃
−1

2
𝑢,

1
2
𝑢

]︃
,

with 𝐺𝑚,𝑛
𝑝,𝑞

(︃
x
y

|︁|︁|︁|︁ 𝑧)︃ denoting the Meijer G-function [Bat53]. Plugging the expression
for the integral in Equation (I.14) into the expression for 𝐿−⊤ B−𝑡

−𝑚−𝑠 in Equation (I.12)
gives [︂

𝐿−⊤ B−𝑡
−𝑚−𝑠

]︂
(𝑟, 𝜗) =

R𝑚𝑠

∞∑︁
𝑢=−∞

𝑒−𝑖𝑢(𝜑+𝜗)−𝑖 (𝑚−𝑢)𝜘 𝜏−𝑖𝑠+𝑡 𝑀 𝑡
𝑚𝑠𝑢(𝛼2𝜏−2𝑟2)

(I.15)

The above expansion factors out the the rotational and translational components
of 𝐿⊤ as desired, and the final step is to factor out the scale term 𝛼2𝜏−2 acting on 𝑟2

in the argument of the function 𝑀 𝑡
𝑚𝑠𝑢.

To do so, we decompose𝑀 𝑡
𝑚𝑠𝑢 using the Mellin transform. The basis functions of

theMellin transform 𝑟𝑖𝜔−𝜎 are the irreducable unitary representations of the group
of dilations acting viamultiplication on the positive real line. By decomposing𝑀 𝑡

𝑚𝑠𝑢

in terms of these bases, we factor out the 𝛼2𝜏−2 term in the argument using the reg-
ular representation of the group in the same manner as was done in Equation (I.2).
Specifically, for 0 ≤ 𝑡 < 1, and real numbers 𝜎1, 𝜎2 satisfying

𝑡 < 𝜎1 < 2 and 𝑡 − 1 < 𝜎2 < 0 (I.16)
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𝑀 𝑡
𝑚𝑠𝑢(𝑟2) can be decomposed as a sum of two Mellin transform expansions

𝑀 𝑡
𝑚𝑠𝑢(𝑟2) = 1

2𝜋

2∑︁
𝑗=1

∫ ∞

0
𝑗M

𝑡,𝜎 𝑗

𝑚𝑠𝑢(𝜔) 𝑟𝜎 𝑗−𝑖𝜔𝑑𝜔. (I.17)
where

1M
𝑡,𝜎1
𝑚𝑠𝑢(𝜔) = (I.18)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ
(︁𝜎1+𝑖𝜔−𝑢

2
)︁
Γ
(︁𝑢+𝑖𝑠−𝑚−𝜎1−𝑖𝜔−𝑡

2
)︁

2 Γ
(︁2−𝑢−𝜎1−𝑖𝜔

2
)︁
Γ
(︁2+𝑢−𝑖𝑠−𝑚+𝜎1+𝑖𝜔+𝑡

2
)︁ 𝑢 ≥ 𝑚, 𝑢 < 0

(−1)𝑢
Γ
(︁𝑢+𝜎1+𝑖𝜔

2
)︁
Γ
(︁𝑢+𝑖𝑠−𝑚−𝜎1−𝑖𝜔−𝑡

2
)︁

2 Γ
(︁2+𝑢−𝜎1−𝑖𝜔

2
)︁
Γ
(︁2+𝑢−𝑖𝑠−𝑚+𝜎1+𝑖𝜔+𝑡

2
)︁ 𝑢 ≥ 𝑚, 𝑢 > 0

(−1)𝑢−𝑚
Γ
(︁𝜎1+𝑖𝜔−𝑢

2
)︁
Γ
(︁−𝑢+𝑖𝑠+𝑚−𝜎1−𝑖𝜔−𝑡

2
)︁

2 Γ
(︁2−𝑢−𝜎1−𝑖𝜔

2
)︁
Γ
(︁2−𝑢−𝑖𝑠+𝑚+𝜎1+𝑖𝜔+𝑡

2
)︁ 𝑢 < 𝑚, 𝑢 < 0

(−1)𝑚
Γ
(︁𝑢+𝜎1+𝑖𝜔

2
)︁
Γ
(︁−𝑢+𝑖𝑠+𝑚−𝜎1−𝑖𝜔−𝑡

2
)︁

2 Γ
(︁2+𝑢−𝜎1−𝑖𝜔

2
)︁
Γ
(︁2−𝑢−𝑖𝑠+𝑚+𝜎1+𝑖𝜔+𝑡

2
)︁ 𝑢 < 𝑚, 𝑢 > 0

0 𝑢 = 0, 𝑚 ≠ 0

Γ
(︁2+𝜎1+𝑖𝜔

2
)︁
Γ
(︁ 𝑖𝑠−𝜎1−𝑖𝜔−𝑡

2
)︁

2
(︂
1 − 2−𝑖𝑠+𝑡

2

)︂
Γ
(︁2−𝜎1−𝑖𝜔

2
)︁
Γ
(︁2−𝑖𝑠+𝜎1+𝑖𝜔+𝑡

2
)︁ 𝑢 = 𝑚 = 0

and
2M

𝑡,𝜎2
𝑚𝑠𝑢(𝜔) = (I.19)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 𝑢 ≠ 0

Γ
(︁𝜎2+𝑖𝜔

2
)︁
Γ
(︁ 𝑖𝑠−𝑚−𝜎2−𝑖𝜔−𝑡

2
)︁

2 Γ
(︁2−𝜎2−𝑖𝜔

2
)︁
Γ
(︁2−𝑖𝑠−𝑚+𝜎2+𝑖𝜔+𝑡

2
)︁ 𝑢 = 0, 𝑚 < 0

(−1)𝑚
Γ
(︁𝜎2+𝑖𝜔

2
)︁
Γ
(︁ 𝑖𝑠+𝑚−𝜎2−𝑖𝜔−𝑡

2
)︁

2 Γ
(︁2−𝜎2−𝑖𝜔

2
)︁
Γ
(︁2−𝑖𝑠+𝑚+𝜎2+𝑖𝜔+𝑡

2
)︁ 𝑢 = 0, 𝑚 > 0

Γ
(︁𝜎2+𝑖𝜔

2
)︁
Γ
(︁2+𝑖𝑠−𝜎2−𝑖𝜔−𝑡

2
)︁

2
(︂
1 − 2−𝑖𝑠+𝑡

2

)︂
Γ
(︁2−𝜎2−𝑖𝜔

2
)︁
Γ
(︁2−𝑖𝑠+𝜎2+𝑖𝜔+𝑡

2
)︁ 𝑢 = 𝑚 = 0

.
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Here, the bounds of 𝜎1 and 𝜎2 are due to the particular properties of the Mellin
transform and ensure that the 𝑀 𝑡

𝑚𝑠𝑢 can be recovered from the coefficients of the
forward transform [VK91]. Then, replacing 𝑀 𝑡

𝑚𝑠𝑢(𝛼2𝜏−2𝑟2) in Equation (I.15) with
itsMellin decomposition in Equation (I.17), rearranging terms, and converting back
to complex coordinates (𝑟, 𝜗) ↦→ (|𝑧 |,Arg 𝑧) gives[︂

𝐿−⊤ B−𝑡
−𝑚−𝑠

]︂
(𝑧) =

R𝑠𝑚

2𝜋

∞∑︁
𝑢=−∞

∫ ∞

0

2∑︁
𝑗=1

B−𝜎 𝑗

−𝑢−𝜔 (𝑎2) B𝜎 𝑗−𝑡
𝑢−𝑚𝜔−𝑠(𝑎𝑛)

× 𝑗M
𝑡,𝜎 𝑗

𝑚𝑠𝑢(𝜔) B
−𝜎 𝑗

−𝑢−𝜔 (𝑧) 𝑑𝜔.

(I.20)

Finally, substituting this expression into Equation (I.6) and using Equation (I.5) we
arrive at the desired expansion of 𝐿B𝑡

𝑚𝑠:[︂
𝐿B𝑡

𝑚𝑠

]︂
(𝑧) =

R𝑠𝑚

2𝜋

∞∑︁
𝑢=−∞

∫ ∞

0

2∑︁
𝑗=1

B−𝜎 𝑗

−𝑢−𝜔 (𝑎2) B𝜎 𝑗−𝑡
𝑢−𝑚𝜔−𝑠(𝑎𝑛)

× 𝑗M
𝑡,𝜎 𝑗

𝑚𝑠𝑢(𝜔) B
𝜎 𝑗

𝑢𝜔 (𝑧) 𝑑𝜔.

(I.21)

General Case (𝑛 ∈ ℂ) : We combine the expansions of 𝐿B𝑡
𝑚𝑠 for the cases 𝑛 = 0 in

Equation (I.2) and 𝑛 ≠ 0 in Equation (I.21) into a general form holding for all 𝐿 ∈ L.
Specifically, we define the following functions mapping a lower-triangular matrix
to a set of filter coefficients,

𝑢𝜔
1𝝃

𝑡𝜎1
𝑚𝑠 (𝐿) = (1 − 𝛿|𝑛|0)

R𝑠𝑚

2𝜋
B−𝜎1
−𝑢−𝜔 (𝑎2)

× B𝜎1−𝑡
𝑢−𝑚𝜔−𝑠(𝑎𝑛) 1M

𝑡,𝜎 𝑗

𝑚𝑠𝑢(𝜔), (I.22)
𝑢𝜔

2𝝃
𝑡𝜎2
𝑚𝑠 (𝐿) = (1 − 𝛿|𝑛|0)

R𝑠𝑚

2𝜋
B−𝜎2
−𝑢−𝜔 (𝑎2)

× B𝜎2−𝑡
𝑢−𝑚𝜔−𝑠(𝑎𝑛) 2M

𝑡,𝜎2
𝑚𝑠𝑢(𝜔), (I.23)

𝑢𝜔
3𝝃

𝑡𝜎3
𝑚𝑠 (𝐿) = 𝛿|𝑛|0𝛿𝑚𝑢𝛿(𝑠 − 𝜔) B−𝜎3

−𝑚−𝑠(𝑎2), (I.24)
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where 𝛿𝑥 𝑦 and 𝛿(𝑥) denote the Kronecker and Dirac delta functions, respectively,
and 𝜎1, 𝜎2 satisfy the conditions in Equation (I.16). Given B𝑡

𝑚𝑠 for some 𝑡 ∈ (0, 1)

and setting 𝜎3 = 𝑡, it follows from Equations (I.2) and (I.21) that for any 𝐿 ∈ L, 𝐿B𝑡
𝑚𝑠

can be expanded as
𝐿B𝑡

𝑚𝑠 =

∞∑︁
𝑢=−∞

∫ ∞

−∞

3∑︁
𝑗=1

𝑢𝜔
𝑗𝝃

𝑡𝜎 𝑗

𝑚𝑠 (𝐿) B
𝜎 𝑗

𝑢𝜔 𝑑𝜔 (I.25)
In practice, we only sum over the first two indices of 𝑗, replacing 𝑎𝑛 with a small
constant factor 𝜀 = 0.05 whenever |𝑎𝑛| nears zero.

B. Transformation of Filters

Using the expansion of the transformation of basis functions in Equation (I.25), it
is straight-forward to recover the expansion of the transformation of filters of the
form

𝑓 =
𝑀∑︁

𝑚=−𝑀

𝑁∑︁
𝑠=−𝑁

𝑏𝑚𝑠 B𝑡
𝑚𝑠,

by elements of L. Namely,
𝐿 𝑓 =

𝑀∑︁
𝑚=−𝑀

𝑁∑︁
𝑠=−𝑁

𝑏𝑚𝑠 𝐿B𝑡
𝑚𝑠 (I.26)

(𝐼 .25)
=

𝑀∑︁
𝑚=−𝑀

𝑁∑︁
𝑠=−𝑁

𝑏𝑚𝑠

∞∑︁
𝑢=−∞

∫ ∞

−∞

3∑︁
𝑗=1

𝑢𝜔
𝑗𝝃

𝑡𝜎 𝑗

𝑚𝑠 (𝐿) B
𝜎 𝑗

𝑢𝜔 𝑑𝜔 (I.27)

=

∞∑︁
𝑢=−∞

∫ ∞

−∞

3∑︁
𝑗=1

[︄
𝑀∑︁

𝑚=−𝑀

𝑁∑︁
𝑠=−𝑁

𝑏𝑚𝑠
𝑢𝜔
𝑗𝝃

𝑡𝜎 𝑗

𝑚𝑠 (𝐿)
]︄

⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
𝑗𝜻

𝑡𝜎 𝑗
𝑢𝜔 (𝐿,b)

B𝜎 𝑗

𝑢𝜔 𝑑𝜔, (I.28)

where b is the (2𝑀 + 1) × (2𝑁 + 1)-dimensional vector of coefficients of 𝑓 and 𝑗𝜻
𝑡𝜎 𝑗

𝑢𝜔

maps a lower-triangular element and a set of filter coefficients to the coefficient of
B𝜎 𝑗

𝑢𝑠𝜔 in the expansion.
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C. Implementation

As discussed in §7.4 we approximate the expansion of 𝐿 𝑓 by truncating the sum-
mation over 𝑢, and replacing the integration over the real line with a discrete ap-
proximation using quadrature. The summation is a consequence of the addition
theorem for Bessel functions [Wat95]. Here it arises in the regular representation of
SE(2) used in Equation (I.12) to factor the rotational and translational components
of the transformations from the argument of the basis functions. Fortunately, it con-
verges rapidly for low angular basis frequencies𝑚 andwe typically find truncation
at 𝑀 + 1 terms to be sufficient.

Approximating the integral in the expansion is less straight-forward. For exam-
ple, the reader may have noticed that the second to last equality – Equation (I.13) –
in the expansion of the integral in Equation (I.12) provides a seemingly suitable sep-
aration of variables for our purposes, raising the question of whywe expend the ad-
ditional effort dealing with the Mellin transform. The problem with the expansion
offered by Equation (I.13) is that the product of Bessel functions in the integrand is
highly-oscillatory, and decays either very rapidly or very slowly depending on the
values of 𝛼, 𝜏 and 𝑟 making a low-order numerical integration scheme impossible.

However, it turns out that first recollecting the separated terms by evaluating
the integral (the inverse Hankel transform) – Equation (I.14) – and then expanding
the solution again using the Mellin transform – Equation (I.17) – gives us something
we can handle numerically. (Equivalently, we could have first expanded 𝐽−𝑢(𝑟𝜌) in
Equation (I.13) using the Mellin transform, then applied the inverse Hankel trans-
form to arrive at a similar expression). Despite being aesthetically-challenged, the
Mellin transform coefficients

𝑗
M𝑡,𝜎 𝑗

𝑚𝑠𝑢 in Equations (I.18 - I.19) have several nice prop-
erties which make possible a low-order quadrature approximation of the integral.
Specifically, they decay rapidly, are relatively smooth, and retain these properties
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even with increasing values of |𝑚|, |𝑠| and |𝑢|. Furthermore, for a given choice of
𝑡 ∈ (0, 1) determining the localization of the filters, the smoothness and decay of
the Mellin coefficients can further be controlled by the choices of 𝜎1 and 𝜎2 satisfy-
ing Equation (I.16). In our implementations with 𝑡 = 0.15, we set 𝜎1 = −0.35 and
𝜎2 = 0.15 as we heuristically observe they improve the smoothness and localisa-
tion of the coefficients, allowing us to better approximate the integral with fewer
quadrature samples. Furthermore, since theMellin transform coefficients

𝑗
M𝑡,𝜎 𝑗

𝑚𝑠𝑢 in
Equations (I.22-I.23) depend only on the radial frequency 𝜔 and are independent
of both 𝐿 and the filter coefficients b they are computed in a pre-processing step,
avoiding the evaluation of the Gamma functions at run-time.
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