
TS2Kit: Tensorized Spherical Harmonic Transforms
https://github.com/twmitchel/TS2Kit

Thomas W. Mitchel
tmitchel@jhu.edu

March 2022

TS2Kit (Version 1.0) is a self-contained PyTorch library which computes auto-
differentiable forward and inverse discrete SphericalHarmonic Transforms (SHTs).
The routines in TS2Kit are based on the seminal S2Kit and SOFT packages [DH94,
HRKM03, KR08], but are designed for evaluation on a GPU. Specifically, the Discrete
Legendre Transform (DLT) is computed via sparse matrix multiplication in what is
essentially a tensorized version of the so-called “semi-naive” algorithm [HRKM03].
This enables parallelization while keeping memory footprint small, and the end
result are auto-differentiable forward and inverse SHTs that are fast and efficient
in a practical sense. For example, given a spherical signal (tensor) taking values
on a 128 × 128 spherical grid with 𝑏 = 4096 batch dimensions, TS2Kit computes a
forward SHT followed by an inverse SHT in approximately tens of milliseconds at
floating precision.

Contents

1 Conventions 2
1.1 Spherical Harmonics . 2
1.2 Expanding the Wigner-d functions . 3
1.3 The Spherical Harmonic Transform . 4

2 Implementation 4
2.1 Forward Transform . 4
2.2 Inverse Transform . 7
2.3 Composing the Transforms . 8

1

https://github.com/twmitchel/TS2Kit

3 TS2Kit 9
3.1 Set up . 9
3.2 The Forward and Inverse SHTs . 10
3.3 Typing . 11

1 Conventions

Of course, this package would be absolutely useless without describing the chosen
conventions, so this is where we will begin. Ours deviate slightly from those used
in the S2Kit and SOFT packages, mixing in a bit of Vilenkin [Vil78, VK91] and Var-
shalovich et al. [VMK88].

The SHT is computed with respect to a 𝑍 − 𝑌 Euler angle spherical coordinate
parameterization

[0, 2𝜋) × [0, 𝜋] ∋ (𝜃, 𝜙) ↦→ (cos 𝜃 sin𝜙, sin 𝜃 sin𝜙, cos 𝜃).

Note that this corresponds to the parameterization of the Riemann sphere

(𝜃, 𝜙) ↦→ tan
𝜙

2
𝑒−𝑖𝜃

induced by stereographic projection from the north pole.

1.1 Spherical Harmonics

Here we define spherical harmonics with respect to the (normalized) Wigner-D
functions, with the (ℓ, 𝑚, 𝑛)−th function given in 𝑍 − 𝑌 − 𝑍 Euler angles by:

𝐷ℓ
𝑚𝑛(𝜃, 𝜙, 𝜓) ≡ 𝑒−𝑖𝑚𝜃 𝑑ℓ

𝑚𝑛(𝜙) 𝑒−𝑖𝑛𝜓, (1)

where 𝑑ℓ
𝑚𝑛(𝜙) are the normalizedWigner-d ("little d") functions:

𝑑ℓ
𝑚𝑛(𝜙) =

[
1
2
(2ℓ + 1) (ℓ +𝑚)! (ℓ −𝑚)! (ℓ + 𝑛)! (ℓ − 𝑛)!

] 1
2

×
min(ℓ+𝑚,ℓ−𝑛)∑︁
𝑘=max(0,𝑚−𝑛)

(−1)𝑘
(
cos 𝜙

2
)2ℓ−2𝑘+𝑚−𝑛 (sin 𝜙

2
)2𝑘−𝑚+𝑛

𝑘! (ℓ +𝑚 − 𝑘)! (ℓ − 𝑛 − 𝑘)! (𝑛 −𝑚 + 𝑘)!

(2)

2

The (𝑙, 𝑚)−th spherical harmonics are proportional to the (𝑙, 𝑚, 0)−th Wigner-D
functions, and can be expressed as [VMK88]:

𝑌 ℓ
𝑚(𝜃, 𝜙) ≡ (−1)𝑚(2𝜋)− 1

2︸ ︷︷ ︸
𝐶𝑚

𝐷ℓ
−𝑚0(𝜃, 𝜙, 0)

≡ 𝐶𝑚 𝑒𝑖𝑚𝜃 𝑑ℓ
−𝑚0(𝜙)

. (3)

Note that the (𝑙,−𝑚, 0)−th Wigner-d functions are proportional to the (𝑙, 𝑚)−th as-
sociated Legendre polynomials

𝐶𝑚 𝑑ℓ
−𝑚0(𝜙) =

(
(ℓ −𝑚)!
(ℓ +𝑚)!

) 1
2

𝑃𝑚
ℓ (cos𝜙),

from which the familiar expression for 𝑌 ℓ
𝑚 in terms of 𝑃𝑚

ℓ can be recovered.

1.2 Expanding the Wigner-d functions

Following Edmonds [Edm55], it can be shown that the (𝑙,−𝑚, 0)−th Wigner-d func-
tions can be expanded in either an ℓ−bandlimited cosine or sine series, depending
on whether 𝑚 is even or odd. Specifically, denoting [𝑚]2 ≡ 𝑚mod2, if [𝑚]2 = 0,
then 𝑑ℓ

−𝑚0(𝜙) can be expressed as a cosine series with

𝑑ℓ
−𝑚0(𝜙) =

ℓ∑︁
𝑘=0

𝜉ℓ𝑚𝑘 cos 𝑘𝜙

𝜉ℓ𝑚𝑘 = (−1) 𝑚mod4
2

√︂
(2ℓ + 1) (2 − 𝛿𝑘0)

2
𝛿ℓmod2,𝑘mod2 𝑑

ℓ
𝑘−𝑚

(𝜋
2

)
𝑑ℓ
𝑘0

(𝜋
2

)
,

(4)

where 𝛿 denotes the Kronecker delta. Similarly, if [𝑚]2 = 1, then 𝑑ℓ
−𝑚0(𝜙) can be

expressed as a sine series with

𝑑ℓ
−𝑚0(𝜙) =

ℓ∑︁
𝑘=0

𝜁 ℓ𝑚𝑘 sin(𝑘 + 1)𝜙

𝜁 ℓ𝑚𝑘 = (−1)
(𝑚mod4)−1

2 +1
√︂

(2ℓ + 1) (2 − 𝛿𝑘ℓ)
2

𝛿ℓmod2,(𝑘+1)mod2 𝑑
ℓ
𝑘+1−𝑚

(𝜋
2

)
𝑑ℓ
𝑘+1 0

(𝜋
2

)
.

(5)

3

Note that in both expansions, 𝜉ℓ
𝑚𝑘

and 𝜁 ℓ
𝑚𝑘

vanish whenever 𝑘 is even or odd (de-
pending on the parity of ℓ).

1.3 The Spherical Harmonic Transform

If 𝜓 is a 𝐵−1 band-limited function in 𝐿2(𝑆2,ℂ), then it can be expressed as a band-
limited sum of spherical harmonics:

𝜓(𝜃, 𝜙) =
𝐵−1∑︁
ℓ=0

ℓ∑︁
𝑚=−ℓ

𝚿ℓ𝑚𝑌 ℓ
𝑚(𝜃, 𝜙), (6)

with coefficients given by

𝚿ℓ𝑚 =

∫ 2𝜋

0

∫ 𝜋

0
𝜓(𝜃, 𝜙)𝑌 ℓ

𝑚(𝜃, 𝜙) sin𝜙 𝑑𝜙 𝑑𝜃. (7)

Themapping from𝜓 to its SH coefficients𝚿 in Equation (7) is the Forward Spherical
Harmonic Transform, and the reconstruction of 𝜓 from its SH coefficents in Equa-
tion (6) is the Inverse Spherical Harmonic Transform.

2 Implementation

2.1 Forward Transform

Thediscrete forward SHT takes as input a (𝐵−1)−bandlimited function𝜓 ∈ 𝐿2(𝑆2,ℂ)
sampled on a 2𝐵 × 2𝐵 Driscoll-Healy spherical grid [DH94]:

𝜃 𝑗 =
2𝜋 𝑗
2𝐵

, 𝜙𝑘 =
𝜋(2𝑘 + 1)

4𝐵
0 ≤ 𝑗, 𝑘 < 2𝐵. (8)

Then, defining quadrature weights

𝑤𝐵(𝑘) =
2
𝐵
sin

(
𝜋(2𝑘 + 1)

4𝐵

) 𝐵−1∑︁
𝑝=0

1
2𝑝 + 1 sin

(
(2𝑘 + 1) (2𝑝 + 1) 𝜋

4𝐵

)
0 ≤ 𝑘 < 2𝐵

(9)

4

for ℓ ≤ 𝐵 − 1, the (ℓ, 𝑚)−th spherical harmonic coefficient of 𝜓 is given by [DH94,
HRKM03, KR08]

𝚿ℓ𝑚 =
1
2𝐵

2𝐵−1∑︁
𝑗,𝑘=0

𝑤𝐵(𝑘) 𝜓(𝜃 𝑗 , 𝜙𝑘)𝑌 ℓ
𝑚(𝜃 𝑗 , 𝜙𝑘)

(3)
= 𝐶𝑚

2𝐵−1∑︁
𝑘=0

𝑤𝐵(𝑘) 𝑑ℓ
−𝑚0(𝜙𝑘)


1
2𝐵

2𝐵−1∑︁
𝑗=0

𝜓(𝜃 𝑗 , 𝜙𝑘) 𝑒−𝑖𝑚𝜃 𝑗

︸ ︷︷ ︸
𝜓𝑚 (𝜙𝑘)

. (10)

Note that the bracketed term in the second equality – denoted 𝜓𝑚(𝜙𝑘) – is exactly
the 𝑚−th Fourier coefficient of 𝜓 with respect to 𝜃, and can be computed via the
FFT.

Plugging in the cosine and sine series expansions for 𝑑ℓ
−𝑚0 in Equations (4-5), for

[𝑚]2 = 0 we have

𝚿ℓ𝑚 = 𝐶𝑚

ℓ∑︁
𝑛=0

𝜉ℓ𝑚𝑛

[
2𝐵−1∑︁
𝑘=0

𝑤𝐵(𝑘) 𝜓𝑚(𝜙𝑘) cos 𝑛𝜙𝑘

]
, (11)

and for [𝑚]2 = 1

𝚿ℓ𝑚 = 𝐶𝑚

ℓ∑︁
𝑛=0

𝜁 ℓ𝑚𝑛

[
2𝐵−1∑︁
𝑘=0

𝑤𝐵(𝑘) 𝜓𝑚(𝜙𝑘) sin(𝑛 + 1)𝜙𝑘

]
. (12)

Equations (11-12) give a numerical recipe for computing the forward SHT: 1). Com-
pute the discrete Fourier transform in the variable 𝜃 via the FFT; 2). Multiply by the
quadrature weights 𝑤𝐵(𝑘) and compute the discrete cosine and sine transforms in
the variable 𝜙; and 3). Multiply by 𝜉ℓ𝑚𝑛 and 𝜁 ℓ𝑚𝑛 and sum to get the SH coefficients
(up to the normalization factor 𝐶𝑚).

5

Tensorized Forward SHT

InTS2Kit, the (𝐵−1)−bandlimited forward SHT takes as input a (𝐵−1)−bandlimited
signal 𝜓 sampled on a DH spherical grid, given by the 2𝐵 × 2𝐵 tensor

𝜓 =


𝜓(𝜃0, 𝜙0) · · · 𝜓(𝜃0, 𝜙2𝐵−1)

...
. . .

...

𝜓(𝜃2𝐵−1, 𝜙0) · · · 𝜓(𝜃2𝐵−1, 𝜙2𝐵−1)

 , (13)

where 𝜃 and 𝜙 increment along the columns and rows, respectively. Step 1). – the
Fourier transform in 𝜃 – is implemented by applying PyTorch’s native FFT routine
along the columns of 𝜓, giving the (2𝐵 − 1) × 2𝐵 tensor

𝜓 =


𝜓−(𝐵−1) (𝜙0) · · · 𝜓−(𝐵−1) (𝜙2𝐵−1)

...
. . .

...

𝜓𝐵−1(𝜙0) · · · 𝜓𝐵−1(𝜙2𝐵−1)

 . (14)

Steps 2). – 3). constitute the Discrete Legendre Transform and are computed as
follows: Let 𝜓𝑚 denote the the 2𝐵 × 1 tensor corresponding to the transpose of the
(𝑚 + 𝐵)−th row of 𝜓:

𝜓𝑚 =


𝜓𝑚(𝜙0)

...

𝜓𝑚(𝜙2𝐵−1)

 , −(𝐵 − 1) ≤ 𝑚 ≤ 𝐵 − 1. (15)

Now, takeW to be the 2𝐵 × 2𝐵 diagonal weight matrix

W = diag [𝑤𝐵(0), . . . , 𝑤𝐵(2𝐵 − 1)] , (16)

let C and S be the 2𝐵 × 2𝐵 (orthogonal) DCT and DST matrices, and denote 𝝃𝑚 and
𝜻𝑚 as the 𝐵 × 2𝐵 matrices with entries

[𝝃𝑚]𝑖 𝑗 =
{
𝜉
(𝑖−1)
𝑚(𝑗−1) |𝑚|, 𝑗 − 1 ≤ 𝑖 − 1

0 otherwise
, (17)

6

and

[𝜻𝑚]𝑖 𝑗 =
{
𝜁
(𝑖−1)
𝑚(𝑗−1) |𝑚|, 𝑗 − 1 ≤ 𝑖 − 1

0 otherwise
. (18)

We note that,𝝃𝑚 and 𝜻𝑚 are sparse since 𝜉 (𝑖−1)
𝑚(𝑗−1) and 𝜁

(𝑖−1)
𝑚(𝑗−1) will vanish whenever

(𝑗 − 1) is even or odd.
Then, steps 2). and 3). can be computed by multiplying 𝜓𝑚 by either 𝝃𝑚 CW or

𝜻𝑚 SW, depending on whether 𝑚 is even or odd, then scaling by 𝐶𝑚 to recover the
SH coefficients of 𝜓 with polar frequency 𝑚. That is,

𝚿𝑚 =


𝚿0𝑚

𝚿1𝑚
...

𝚿(𝐵−1)𝑚


=


𝐶𝑚 𝝃𝑚 CW 𝜓𝑚 [𝑚]2 = 0

𝐶𝑚 𝜻𝑚 SW 𝜓𝑚 [𝑚]2 = 1
(19)

where 𝚿ℓ𝑚 = 0 if ℓ < |𝑚|. In TS2Kit, multiplication of the rows of 𝜓 by CW and
SW is implemented as a linear layer since both matrices are fixed for even and
odd values of 𝑚. The resulting (2𝐵 − 1) × 2𝐵 tensor is transposed and vectorized
(equivalent to a torch.reshape) and multiplied by the (2𝐵 − 1)𝐵 × (2𝐵 − 1)2𝐵
sparse matrix corresponding to the direct sum over −(𝐵 − 1) ≤ 𝑚 ≤ (𝐵 − 1) of 𝝃𝑚
and 𝜻𝑚 interleaved. CW, SW, and the (2𝐵 − 1)𝐵 × (2𝐵 − 1)2𝐵 sparse matrix are
pre-computed and stored on device memory at inference.

2.2 Inverse Transform

The beauty of the DH sampling theorem is that 𝝃𝑚 CW and 𝝃𝑚 CW are the left gen-
eralized inverses of (𝝃𝑚 C)⊤ and (𝜻𝑚 S)⊤, respectively, with

𝝃𝑚 CW (𝝃𝑚 C)⊤ =

[
0|𝑚| 0|𝑚|
0|𝑚| 𝐼(𝐵−1)−|𝑚|

]
,

𝝃𝑚 CW (𝜻𝑚 S)⊤ =

[
0|𝑚| 0|𝑚|
0|𝑚| 𝐼(𝐵−1)−|𝑚|

]
,

where 0|𝑚| is the |𝑚|× |𝑚| zeromatrix and 𝐼(𝐵−1)−|𝑚| is the (𝐵−1)− |𝑚|× (𝐵−1)− |𝑚|
identity matrix. From this, computing the inverse SHT is straight-forward.

In TS2Kit, the (𝐵 − 1)−bandlimited inverse SHT takes as input a (2𝐵 − 1) × 𝐵

7

array of SH coefficients, with 𝑚 and ℓ incremented along the columns and rows,
respectively:

𝚿 =



0 0 · · · 0 𝚿(𝐵−1)−(𝐵−1)
0 0 · · · 𝚿(𝐵−2)−(𝐵−2) 𝚿(𝐵−1)−(𝐵−2)
...

... . .
. ...

...

0 𝚿1−1 · · · 𝚿(𝐵−2)−1 𝚿(𝐵−2)−1
𝚿00 𝚿10 · · · 𝚿(𝐵−2)0 𝚿(𝐵−2)0
0 𝚿11 · · · 𝚿(𝐵−2)1 𝚿(𝐵−2)1
...

...
. . .

...
...

0 0 · · · 𝚿(𝐵−2) (𝐵−2) 𝚿(𝐵−1) (𝐵−2)
0 0 · · · 0 𝚿(𝐵−1) (𝐵−1)



. (20)

Letting 𝚿𝑚 denote the transpose of the (𝑚 + 𝐵)−th row of 𝚿 as in Equation (19) –
the SH coefficients with polar frequency 𝑚 – we can compute the inverse DLT by
multiplying by either (𝝃𝑚 C)⊤ or (𝜻𝑚 S)⊤ (depending on the parity of𝑚) to recover
the transpose of the (𝑚 + 𝐵)−th row of 𝜓 as in Equation (15):

𝜓𝑚 =

{
(𝝃𝑚 C)⊤ 𝚿𝑚 [𝑚]2 = 0
(𝜻𝑚 S)⊤ 𝚿𝑚 [𝑚]2 = 1

. (21)

After recovering 𝜓, the inverse FFT is applied along the columns to get 𝜓.

2.3 Composing the Transforms

Denote F and I as the discrete (𝐵 − 1)−bandlimited forward and inverse SHTs,
respectively, and let 𝜓 be a spherical signal sampled on the corresponding 2𝐵 × 2𝐵
DH spherical grid as in Equation (13). The “catch” in the DH sampling theorem is
that

(I ◦ F)(𝜓) = 𝜓 ⇐⇒ 𝜓 is a (𝐵 − 1) − bandlimited function.

In other words, mapping 𝜓 to its SH coefficients via the forward SHT, then applying
the inverse SHT to the coefficients returns an exact copy of 𝜓 only in the case when
𝜓 is a (𝐵 − 1)−bandlimited spherical function.

Of course, it will almost never be the case that a real-world signal will be an
exact (𝐵 − 1)−bandlimited function and thus cannot be exactly recovered from its

8

SH coefficients given by the discrete forward SHT. Instead, applying the forward
transform followed by the inverse transform will result in some degree of spectral
aliasing, i.e. (I ◦ F)(𝜓) will appear to be a slightly blurred version of 𝜓. It is worth
noting that this is not a “bug” in TS2Kit, but rather a “feature” of the existing spheri-
cal sampling theorems. If you are aware of a spherical sampling theorem for which
(I◦F)(𝜓) = 𝜓 for any signal sampled on the prescribed spherical grid, please reach
out to me.

That said, it is always the case that

(F ◦ I)(𝚿) = 𝚿,

for any (2𝐵 − 1) × 𝐵 array of SH coefficients 𝚿 as in Equation (20).

3 TS2Kit

3.1 Set up

To use TS2Kit, simply copy the TS2Kit folder into your project directory.

Setting the cache path

Several tensors are pre-computed at initialization and at higher bandlimits (𝐵 ≥
64) this can take some time. To avoid re-computing these quantities every initial-
ization, the modules will check if the tensors have been saved in a cache directory
and either A). load the tensors directly from the cache; or B). compute the tensors
and save them to the cache directory so they can be loaded next time the modules
are initialized.

To enable caching, choose a directory on your machine to serve as the cache
folder and set the variable cacheDir at the top of the ts2kit.py file to the abso-
lute path of the directory, e.g.

cacheDir = ’/absolute/path/to/cache’

The cache directory can be cleared (of .pt files) at anytime by importing and run-
ning the clearCache function:

9

from TS2Kit.ts2kit import clearCache

clearCache()

3.2 The Forward and Inverse SHTs

The front-end of TS2Kit consists of the torch.nn.Module classes FTSHT and IT-
SHT, corresponding to the forward and inverse SHT, respectively. At initialization,
the modules are passed an integer argument 𝐵 which determines the bandlimit of
the forward and inverse SHT, e.g.

from ts2kit.ts2kit import FTSHT, ITSHT

Bandlimit
B = 64

Initialize the (B-1)-bandlimited forward SHT
FT = FTSHT(B)

Initialize the (B-1)-bandlimited inverse SHT
IT = ITSHT(B)

FTSHT: The Forward SHT

Initialized with bandlimit 𝐵, calling the FTSHTmodule applies the forward SHT to a
spherical signal with several batch dimensions. Specifically, inputs are 𝑏 × 2𝐵 × 2𝐵
real or complex torch tensors, where 𝑏 is the batch dimension and the second and
third dimensions increment over the values of 𝜃 and 𝜙 in the 2𝐵 × 2𝐵 DH spherical
grid as in Equation (13). For example, given a tensor psi of size 100 × 128 × 128
(𝑏 = 100, 𝐵 = 64), the element psi[26, 47, 12] is the value of the spherical signal
in batch dimension 26 at coordinates (𝜃46, 𝜙11) in the DH spherical grid as defined
in Equation (8). To assist in sampling to a DH grid, the user can import the gridDH
function, which takes as input a fixed bandlimit 𝐵 and returns two 2𝐵 × 2𝐵 ten-
sors theta and phi giving the spherical coordinates of the corresponding DH grid
indices.

The forward call returns a 𝑏×(2𝐵−1)×𝐵 complex torch tensor giving the array

10

of SH coefficients – with 𝑚 and ℓ incremented along the second and third dimen-
sions, respectively, as in Equation (20) – of spherical signals for each batch dimen-
sion of the input tensor. For example, passing the real or complex 100 × 128 × 128
tensorpsi to themodule returns the complex 100×127×64 tensor of SH coefficients:

F = FTSHT(B)
psiCoeff = F(psi)

The (ℓ, 𝑚)−th SH coefficients in batch dimension 𝑐 can be accessed via psiCo-
eff[c, m+B, l], e.g. for ℓ = 5, 𝑚 = −5, 𝑐 = 12, the corresponding SH coefficient
is psiCoeff[12, 59, 5]. For ℓ < |𝑚|, the values in psiCoeff will be zero.

ITSHT: The Inverse SHT

Initialized with bandlimit 𝐵, calling the ITSHT module applies the inverse SHT to
a signal composed of several arrays of SH coefficients. Inputs are 𝑏 × (2𝐵 − 1) × 𝐵

complex torch tensors consisting of 𝑏 channels of SH coefficent arrays, structured
in exactly the same way as the output of the FTSHT module. The forward call re-
turns a 𝑏 × 2𝐵 × 2𝐵 complex torch tensor corresponding to the spherical signals
reconstructed from the SH coefficients in each batch dimension:

I = ITSHT(B)
psi = I(psiCoeff)

The output tensor is complex-valued, so if the input SH coefficient tensor corre-
sponds to a real-valued signal then the imaginary part of the output tensor will be
zero and it can be cast to a real tensor (e.g. psi.real) without loss of information.

3.3 Typing

The FTSHT and ITSHT modules are initialized at double precision. That is, the for-
ward call of FTSHTmaps tensors of typetorch.double (real-valued) ortorch.cdouble
(complex-valued) to tensors of type torch.cdouble. Similarly, the forward call of
ITSHTmaps tensors of type torch.cdouble to tensors of the same type.

If desired, the modules can be cast to floating precision at initialization, i.e. FT-
SHT(B).float() and ITSHT(B).float(). In this case, the forward call of FTSHT

11

maps tensors of typetorch.float andtorch.cfloat to tensors of typetorch.cfloat
and that of ITSHTmaps tensors of type torch.cfloat to tensors of the same type.

Casting to floating precision results in half the memory overhead and about an
order of magnitude decrease in run-time at the cost of several orders of magnitude
in accuracy. For example, given a tensor of double precision SH coefficients on the
GPU

device = torch.device(’cuda’)

Psi = torch.view_as_complex(2*(torch.rand(b, 2*B -1, B, 2).double() -
0.5)).to(device)

for m in range(-(B-1), B):
for l in range(0, B):

if (l * l < m * m):
Psi[:, m + (B-1), l] = 0.0;

one can expect the following error to be very, very small

F = FTSHT(B).to(device)
I = ITSHT(B).to(device)

Psi2 = F(I(Psi))

This error should be very, very small
error = torch.sum(torch.abs(Psi-Psi2)) / torch.sum(torch.abs(Psi))

Casting to floating precision will result in a significant speed up and less overhead,
but a larger error:

Psi_f = Psi.cfloat();
F_f = FTSHT(B).to(device).float()
I_f = ITSHT(B).to(device).float()

This should run about an order of magnitude faster

12

Psi2_f = F_f(I_f(Psi_f))

This error will be much larger
error = torch.sum(torch.abs(Psi-Psi2)) / torch.sum(torch.abs(Psi))

This does not imply that FSHT and ISHT modules are “slow” at double precision
nor “inaccurate” at floating precision. Rather, it all depends on the application.
The test_ts2kit.ipynb notebook included in the TS2Kit folder can be used to
compare the transforms at different precisions and bandlimits to see what makes
sense for your use case.

References

[DH94] James R Driscoll and Dennis M Healy. Computing Fourier Transforms
and Convolutions on the 2-Sphere. Advances in Applied Mathematics,
15(2):202–250, 1994.

[Edm55] Alan R Edmonds. Angular Momentum in Quantum Mechanics. Techni-
cal report, CERN, 1955.

[HRKM03] Dennis M Healy, Daniel N Rockmore, Peter J Kostelec, and Sean Moore.
FFTs for the 2-Sphere-Improvements and Variations. Journal of Fourier
Analysis and Applications, 9(4):341–385, 2003.

[KR08] Peter J Kostelec and Daniel N Rockmore. FFTs on the Rotation Group.
Journal of Fourier Analysis and Applications, 14(2):145–179, 2008.

[Vil78] N. Ja. Vilenkin. Special Functions and the Theory of Group Representa-
tions, volume 22. American Mathematical Soc., 1978.

[VK91] N. Ja. Vilenkin and A. U. Klimyk. Representation of Lie Groups and Spe-
cial Functions: Volume 1: Simplest Lie Groups, Special Functions and
Integral Transforms (Mathematics and its Applications), 1991.

[VMK88] Dmitri Aleksandrovich Varshalovich, Anatolij Nikolaevic Moskalev, and
Valerii Kel’manovich Khersonskii. Quantum Theory of Angular Momen-
tum. World Scientific, 1988.

13

	Conventions
	Spherical Harmonics
	Expanding the Wigner-d functions
	The Spherical Harmonic Transform

	Implementation
	Forward Transform
	Inverse Transform
	Composing the Transforms

	TS2Kit
	Set up
	The Forward and Inverse SHTs
	Typing

