Thomas W. Mitchel

Research Interests	Equivariant and geometric deep learning, computer graphics, and harmonic analysi with a particular focus on developing novel tools for analyzing, understanding, an manipulating 3D geometry.		
EDUCATION	Johns Hopkins University • PhD & MSE • Mechanical Engineering Advisor: Michael Kazhdan Thesis: Extending Convolution Through Spatially Adaptive Alignment	2022	
	New York University • BA • Mathematics Magna Cum Laude	2015	
Work History	PlayStation • Sony Interactive Entertainment SENIOR RESEARCH SCIENTIST Technical lead for PlayStation's Geometric AI research group.	2023 –	
	Google Research POSTDOCTORAL FELLOW • GEOMETRIC AI Host: Ameesh Makadia Developed novel generative AI models for creating high-fidelity 3D textur	2022 – 2023 red assets.	
	Adobe Research RESEARCH INTERN • 2D & 3D GRAPHICS Mentors: Vladimir Kim & Noam Aigerman Topics: Equivariant surface CNNs for shape and image analysis, diffusion models for shape generation	2021 – 2022	
Papers	 [1] Neural Isometries: Taming Transformations for Equivariant ML T. W. Mitchel, M. Taylor, V. Sitzmann NEURIPS, 2024 		
	 [2] Single Mesh Diffusion Models with Field Latents for Texture Generation T. W. Mitchel, C. Esteves, A. Makadia CVPR, 2024 		
	 [3] Möbius Convolutions for Spherical CNNs T. W. Mitchel, N. Aigerman, V. G. Kim, M. Kazhdan ACM SIGGRAPH, 2022 		

- [4] Extending Convolution Through Spatially Adaptive Alignment
 T. W. Mitchel
 PHD THESIS, JOHNS HOPKINS UNIVERSITY, 2022
- [5] Field Convolutions for Surface CNNs
 T. W. Mitchel, V. G. Kim, M. Kazhdan
 INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2021
 SELECTED FOR ORAL PRESENTATION
- [6] ECHO: Extended Convolution Histogram of Orientations For Local Surface Description
 T. W. Mitchel, S. Rusinkiewicz, G. S. Chirikjian, M. Kazhdan
 COMPUTER GRAPHICS FORUM, 2021
- [7] Continuous Body 3D Reconstruction of Limbless Animals
 Q. Fu[†], T. W. Mitchel[†], J. S. Kim, G. S. Chirikjian, C. Li
 [†]Equally contributing authors
 JOURNAL OF EXPERIMENTAL BIOLOGY, 2021
- [8] Efficient Spatially Adaptive Convolution and Correlation
 T. W. Mitchel, B. Brown, D. Koller, T. Weyrich, S. Rusinkiewicz, M. Kazhdan
 ARXIV, 2020
- [9] Quotienting Impertinent Camera Kinematics for 3D Video Stabilization T. W. Mitchel, C. Wüelker, J. S. Kim, S. Ruan, G. S. Chirikjian ICCV 2019 Advances in Image Manipulation Workshop
- [10] Snakes Partition Their Body to Traverse Large Steps Stably
 S. W. Gart, T. W. Mitchel, C. Li
 JOURNAL OF EXPERIMENTAL BIOLOGY, 2019
- [11] Improving the Propulsion Speed of a Heaving Wing Through Artificial Evolution of Shape

S. Ramananarivo, T. W. Mitchel, L. Ristroph PROCEEDINGS OF THE ROYAL SOCIETY A, 2019

INVITED	Möbius Convolutions for Spherical CNNs	
Talks	SIGGRAPH 2022 ORAL PRESENTATION	Vancouver, BC • Aug 2022
	Transformation-Aware Convolutions for Image and Shape Analysis	
	Apple	Cupertino, CA (Virtual) • July 2023
	Roblox Research	San Mateo, CA (Virtual) • Sept 2022
	Sony Research	San Jose, CA (Virtual) • Sept 2022
	Google Research	New York, NY (Virtual) • July 2022

CAM INITIATIVE, UCHICAGO DYNAMIC GRAPHICS PROJECT, UTORONTO NVIDIA AI GEOVIC GROUP, ECOLE POLYTECHNIQUE MATHEMATICAL DATA SCIENCE GROUP, JHU QUALCOMM RESEARCH AMAZON RESEARCH ADOBE RESEARCH Chicago, IL (Virtual) • June 2022 Toronto, ON • May 2022 Toronto, ON (Virtual) • April 2022 Paris, France (Virtual) • April 2022 Baltimore, MD • March 2022 San Diego, CA (Virtual) • Feb 2022 Sunnyvale, CA (Virtual) • Feb 2022 San Jose, CA (Virtual) • Dec 2021

Field Convolutions for Surface CNNs ICCV 2021 Oral Presentation

(Virtual) • Oct 2021

A Novel 3D Full Body Model of Snake Locomotion in Complex 3D Terrain APS MARCH MEETING Los Angeles, CA • March 2018

Snakes Traversing Large Step Obstacles: Kinematics and MechanicsSociety for Integrative and Comparative BiologySan Francisco, CA • Jan 2018

TEACHING	Johns Hopkins University • Teaching Assistant			
	EN.601.457/657 Computer Graphics	Fall 2020 – 2021		
	EN.601.454/654 Alternate Reality	Spring 2021		
	EN.601.459/659 Computational Geometry	Spring 2020		
	EN.530.645 KINEMATICS	Spring 2019		
	EN.530.653 Advanced Systems Modeling	Fall 2018		
Service	Reviewer CVPR, NeurIPS, ICLR, SIGGRAPH, SIGGRAPH Asia, PA	νII		

SOFTWARE TS2Kit

Lightweight library for differentiable spherical harmonic transforms in PyTorch https://github.com/twmitchel/TS2Kit

ECHO Descriptors

C++ library for intrinsic surface feature descriptors https://github.com/mkazhdan/ECHODescriptors

SKILLSProgrammingPython, C++LibrariesJAX, PyTorch, Eigen, CMake, OpenGL, Pybind, OpenCVToolsLinux, MATLAB, Mathematica, IATEXTheoreticalLie Groups, Differential Geometry, FFTs, Neural Networks